[1] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2014:580-587. [2] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(6):1137-1149. [3] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards realtime object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2015:91-99. [4] HE K,GKIOXARI G,DOLLÁR P,et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2980-2988. [5] LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer, 2016:21-37. [6] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:779-788. [7] REDMON J, FARHADI A. YOLOV3:an incremental improvement[EB/OL].[2020-04-08]. https://arxiv.org/pdf/1804.02767.pdf. [8] UIJLINGS J R R,VAN DE SANDE K E A,GEVERS T,et al. Selective search for object recognition[J]. International Journal of Computer Vision,2013,104(2):154-171. [9] LIN T Y,DOLLÁR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:936-944. [10] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [11] 严刚. 激光声表面波用于金属表面缺陷无损检测的研究[D]. 南京:南京理工大学,2007:11.(YAN G. Laser-generated surface acoustic waves technology for nondestructive detection of surface-breaking defects on metal[D]. Nanjing:Nanjing University of Science and Technology,2007:11.) [12] 张颖志. 基于激光超声技术的金属表面缺陷检测研究[D]. 大连:大连理工大学,2015:9.(ZHANG Y Z. Study of detecting the metal surface defects based on laser ultrasound technology[D]. Dalian:Dalian University of Technology,2015:9.) [13] 郝培培. 金属材料超声缺陷检测关键技术研究及应用[D]. 南京:南京信息工程大学,2013:7-8.(HAO P P. Research and application on key technology of metal materials ultrasonic flaw detection[D]. Nanjing:Nanjing University of Information Science and Technology,2013:7-8.) [14] 刘辉. 激光超声表面缺陷检测机理研究[D]. 太原:中北大学, 2014:22-23.(LIU H. Research on detection mechanism of laser ultrasonic surface defects[D]. Taiyuan:North University of China,2014:22-23.) [15] 赵海涛. 基于交变磁场测量技术的金属表面缺陷检测系统的研究与实现[D]. 长沙:国防科学技术大学,2004:11.(ZHAO H T. Research and implementation of metal surface defect detection system based on alternating magnetic field measurement technology[D]. Changsha:National University of Defense Technology,2004:11.) [16] 李光霁, 孙国豪, 潘家祯. 用金属磁记忆方法进行缺陷检测[J]. 华东理工大学学报(自然科学版),2006,32(8):1007-1011.(LI G Q,SUN G H,PAN J Z. Metal magnetic memory testing disfigurement testing rate[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2006,32(8):1007-1011.) [17] 徐长航, 陈国明, 谢静. 红外图像处理技术在金属表面缺陷检测中的应用[J]. 制造业自动化,2009,31(10):51-54.(XU C H,CHEN G M,XIE J. Application of infrared thermography technology in surface defects detection of products in metal[J]. Manufacturing Automation,2009,31(10):51-54.) [18] 孔祥伟. 组合光源与图像处理算法在工件表面缺陷检测中的应用[D]. 天津:天津大学,2007:8-9.(KONG X W. The application of combinatorial lamp-house and image processing algorithm in workpiece surface defect inspecting[D]. Tianjin:Tianjin University,2007:8-9.) [19] 刘源泂. 基于图像处理的钢板表面缺陷成像优化与深度信息提取方法研究[D]. 武汉:武汉科技大学,2011:9-10.(LIU Y J. Research on imaging optimization and depth information extraction method of steel plate surface defects based on image processing[D]. Wuhan:Wuhan University of Science and Technology,2011:9-10.) [20] 张建川. 红钢棒材表面缺陷图像采集与检测系统研究[D]. 济南:山东大学,2012:12. (ZHANG J C. Study on image acquisition and inspection system for red steel rod surface defects[D]. Jinan:Shandong University,2012:12.) [21] 张洪涛. 钢板表面缺陷在线视觉检测系统关键技术研究[D]. 天津:天津大学,2008:15.(ZHANG H T. Research on key technology on on-line surface defects detection system for steel plate based on computer vision[D]. Tianjin:Tianjin University, 2008:15.) [22] 杨铁滨. 基于机器视觉的陶瓷球表面缺陷自动检测技术研究[D]. 哈尔滨:哈尔滨工业大学,2007:11-12.(YANG T B. Ceramic bearing ball surface defects inspection based on computer vision[D]. Harbin:Harbin Institute of Technology, 2007:11-12.) [23] ZHENG Z,WANG P,LIU W,et al. Distance-IoU loss:faster and better learning for bounding box regression[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2020:12993-13000. [24] NEUBECK A,VAN GOOL L. Efficient non-maximum suppression[C]//Proceedings of the 18th International Conference on Pattern Recognition. Piscataway:IEEE,2006:850-855. [25] REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6517-6525. |