《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (4): 1240-1247.DOI: 10.11772/j.issn.1001-9081.2022030479
所属专题: 多媒体计算与计算机仿真
收稿日期:2022-04-13
									
				
											修回日期:2022-06-07
									
				
											接受日期:2022-06-14
									
				
											发布日期:2023-04-11
									
				
											出版日期:2023-04-10
									
				
			通讯作者:
					祖佳贞
							作者简介:周永霞(1975—),男,浙江诸暨人,副教授,博士,主要研究方向:机器视觉、人工智能;基金资助:
        
                                                                                                            Jiazhen ZU( ), Yongxia ZHOU, Le CHEN
), Yongxia ZHOU, Le CHEN
			  
			
			
			
                
        
    
Received:2022-04-13
									
				
											Revised:2022-06-07
									
				
											Accepted:2022-06-14
									
				
											Online:2023-04-11
									
				
											Published:2023-04-10
									
			Contact:
					Jiazhen ZU   
							About author:ZHOU Yongxia, born in 1975, Ph. D., associate professor. His research interests include machine vision, artificial intelligence.Supported by:摘要:
在低光条件下拍摄的照片会因曝光不足而产生一系列的视觉问题,如亮度低、信息丢失、噪声和颜色失真等。为了解决上述问题,提出一个结合注意力的双分支残差低光照图像增强网络。首先,采用改进InceptionV2提取浅层特征;其次,使用残差特征提取块(RFB)和稠密残差特征提取块(DRFB)提取深层特征;然后,融合浅层和深层特征,并将融合结果输入亮度调整块(BAM)调整亮度,最终得到增强图像。同时,结合注意力机制设计特征融合块(FFM)捕获重要的特征信息,以帮助恢复低光照图像的暗部区域。此外,引入一个联合损失函数从多方面衡量网络训练损失。实验结果表明,相较于鲁棒的视网膜大脑皮层模型(RRM)、Zero-DCE(Zero-Reference Deep Curve Estimation)和EnlightenGAN(Enlighten Generative Adversarial Network),在LOL(LOw-Light)数据集上,所提网络的峰值信噪比(PSNR)指标分别提高了49.9%、40.0%和18.5%;在LOL-V2数据集上,结构相似性(SSIM)指标分别提高了20.3%、50.0%和34.5%。所提网络在提高低光照图像亮度的同时降低了噪声,减少了颜色失真和伪影,得到的增强图像更加清晰自然。
中图分类号:
祖佳贞, 周永霞, 陈乐. 结合注意力的双分支残差低光照图像增强[J]. 计算机应用, 2023, 43(4): 1240-1247.
Jiazhen ZU, Yongxia ZHOU, Le CHEN. Dual-branch residual low-light image enhancement combined with attention[J]. Journal of Computer Applications, 2023, 43(4): 1240-1247.
| 模块组合 | PSNR/dB | SSIM | 模块组合 | PSNR/dB | SSIM | 
|---|---|---|---|---|---|
| M1 | 22.61 | 0.854 | M5 | 18.52 | 0.803 | 
| M2 | 22.37 | 0.864 | M6 | 21.23 | 0.825 | 
| M3 | 21.55 | 0.862 | M7 | 22.48 | 0.865 | 
| M4 | 21.47 | 0.860 | 本文算法 | 22.73 | 0.870 | 
表1 不同模块组合的客观评价结果
Tab. 1 Objective evaluation results of different module combinations
| 模块组合 | PSNR/dB | SSIM | 模块组合 | PSNR/dB | SSIM | 
|---|---|---|---|---|---|
| M1 | 22.61 | 0.854 | M5 | 18.52 | 0.803 | 
| M2 | 22.37 | 0.864 | M6 | 21.23 | 0.825 | 
| M3 | 21.55 | 0.862 | M7 | 22.48 | 0.865 | 
| M4 | 21.47 | 0.860 | 本文算法 | 22.73 | 0.870 | 
| 损失组合名称 | PSNR/dB | SSIM | 损失组合名称 | PSNR/dB | SSIM | 
|---|---|---|---|---|---|
| L1 | 19.88 | 0.842 | L3 | 22.11 | 0.861 | 
| L2 | 21.37 | 0.858 | 本文算法 | 22.73 | 0.870 | 
表2 不同损失组合的客观评价结果
Tab. 2 Objective evaluation results of different loss combinations
| 损失组合名称 | PSNR/dB | SSIM | 损失组合名称 | PSNR/dB | SSIM | 
|---|---|---|---|---|---|
| L1 | 19.88 | 0.842 | L3 | 22.11 | 0.861 | 
| L2 | 21.37 | 0.858 | 本文算法 | 22.73 | 0.870 | 
| 算法 | LOL | DICM | LIME | MEF | ||
|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | NIQE | NIQE | |||
| LIME | 16.92 | 0.504 | 8.795 | 3.783 | 4.347 | 3.827 | 
| SRIE | 12.28 | 0.509 | 7.716 | 3.173 | 3.469 | 3.204 | 
| MF | 16.69 | 0.508 | 9.713 | 3.544 | 4.103 | 3.400 | 
| NPE | 16.97 | 0.484 | 9.135 | 3.521 | 3.840 | 3.547 | 
| RRM | 13.88 | 0.664 | 3.952 | 3.406 | 4.033 | 3.883 | 
| Retinex-Net | 14.98 | 0.328 | 9.729 | 4.320 | 4.908 | 4.905 | 
| GLADNet | 16.94 | 0.552 | 6.797 | 3.114 | 3.404 | 3.180 | 
| MBLLEN | 17.90 | 0.694 | 4.266 | 2.665 | 3.647 | 3.170 | 
| DeepUPE | 12.90 | 0.465 | 7.994 | 2.954 | 3.462 | 3.178 | 
| EnlightenGAN | 17.56 | 0.666 | 4.815 | 2.530 | 3.295 | 3.053 | 
| Zero-DCE | 14.86 | 0.562 | 8.223 | 2.828 | 3.789 | 3.309 | 
| DLN | 21.95 | 0.807 | 3.656 | 2.734 | 3.601 | 3.523 | 
| 本文算法 | 20.80 | 0.822 | 3.638 | 2.523 | 3.255 | 2.990 | 
表3 不同算法在LOL、DICM、LIME、MEF测试集上的客观评价结果
Tab. 3 Objective evaluation results of different algorithms on LOL,DICM,LIME and MEF test sets
| 算法 | LOL | DICM | LIME | MEF | ||
|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | NIQE | NIQE | |||
| LIME | 16.92 | 0.504 | 8.795 | 3.783 | 4.347 | 3.827 | 
| SRIE | 12.28 | 0.509 | 7.716 | 3.173 | 3.469 | 3.204 | 
| MF | 16.69 | 0.508 | 9.713 | 3.544 | 4.103 | 3.400 | 
| NPE | 16.97 | 0.484 | 9.135 | 3.521 | 3.840 | 3.547 | 
| RRM | 13.88 | 0.664 | 3.952 | 3.406 | 4.033 | 3.883 | 
| Retinex-Net | 14.98 | 0.328 | 9.729 | 4.320 | 4.908 | 4.905 | 
| GLADNet | 16.94 | 0.552 | 6.797 | 3.114 | 3.404 | 3.180 | 
| MBLLEN | 17.90 | 0.694 | 4.266 | 2.665 | 3.647 | 3.170 | 
| DeepUPE | 12.90 | 0.465 | 7.994 | 2.954 | 3.462 | 3.178 | 
| EnlightenGAN | 17.56 | 0.666 | 4.815 | 2.530 | 3.295 | 3.053 | 
| Zero-DCE | 14.86 | 0.562 | 8.223 | 2.828 | 3.789 | 3.309 | 
| DLN | 21.95 | 0.807 | 3.656 | 2.734 | 3.601 | 3.523 | 
| 本文算法 | 20.80 | 0.822 | 3.638 | 2.523 | 3.255 | 2.990 | 
| 算法 | PSNR/dB | SSIM | FSIM | 
|---|---|---|---|
| LIME | 17.78 | 0.499 | 0.886 | 
| SRIE | 15.10 | 0.541 | 0.929 | 
| MF | 18.73 | 0.509 | 0.911 | 
| NPE | 17.33 | 0.464 | 0.863 | 
| RRM | 17.34 | 0.723 | 0.909 | 
| DeepUPE | 14.81 | 0.483 | 0.924 | 
| EnlightenGAN | 18.68 | 0.647 | 0.926 | 
| Zero-DCE | 18.06 | 0.580 | 0.933 | 
| DRBN | 20.13 | 0.830 | 0.946 | 
| 本文算法 | 22.73 | 0.870 | 0.967 | 
表4 不同算法在LOL-V2测试集上的客观评价结果
Tab. 4 Objective evaluation results of different algorithms on LOL-V2 test set
| 算法 | PSNR/dB | SSIM | FSIM | 
|---|---|---|---|
| LIME | 17.78 | 0.499 | 0.886 | 
| SRIE | 15.10 | 0.541 | 0.929 | 
| MF | 18.73 | 0.509 | 0.911 | 
| NPE | 17.33 | 0.464 | 0.863 | 
| RRM | 17.34 | 0.723 | 0.909 | 
| DeepUPE | 14.81 | 0.483 | 0.924 | 
| EnlightenGAN | 18.68 | 0.647 | 0.926 | 
| Zero-DCE | 18.06 | 0.580 | 0.933 | 
| DRBN | 20.13 | 0.830 | 0.946 | 
| 本文算法 | 22.73 | 0.870 | 0.967 | 
| 算法 | PSNR/dB | SSIM | FSIM | 
|---|---|---|---|
| LIME | 17.19 | 0.764 | 0.872 | 
| SRIE | 14.80 | 0.668 | 0.873 | 
| MF | 17.50 | 0.773 | 0.914 | 
| NPE | 16.60 | 0.776 | 0.904 | 
| RRM | 17.15 | 0.730 | 0.877 | 
| DeepUPE | 14.28 | 0.623 | 0.847 | 
| EnlightenGAN | 16.49 | 0.771 | 0.888 | 
| Zero-DCE | 17.76 | 0.814 | 0.926 | 
| DLN | 18.12 | 0.840 | 0.932 | 
| 本文算法 | 22.49 | 0.910 | 0.973 | 
表5 不同算法在LOL-V2合成测试集上的客观评价结果
Tab. 5 Objective evaluation results of different algorithms on LOL-V2 synthetic test set
| 算法 | PSNR/dB | SSIM | FSIM | 
|---|---|---|---|
| LIME | 17.19 | 0.764 | 0.872 | 
| SRIE | 14.80 | 0.668 | 0.873 | 
| MF | 17.50 | 0.773 | 0.914 | 
| NPE | 16.60 | 0.776 | 0.904 | 
| RRM | 17.15 | 0.730 | 0.877 | 
| DeepUPE | 14.28 | 0.623 | 0.847 | 
| EnlightenGAN | 16.49 | 0.771 | 0.888 | 
| Zero-DCE | 17.76 | 0.814 | 0.926 | 
| DLN | 18.12 | 0.840 | 0.932 | 
| 本文算法 | 22.49 | 0.910 | 0.973 | 
| 1 | 欧嘉敏,胡晓,杨佳信. 改进Retinex-Net的低光照图像增强算法[J]. 模式识别与人工智能, 2021, 34(1): 77-86. | 
| OU J M, HU X, YANG J X. Low-light image enhancement algorithm based on improved Retinex-Net[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(1): 77-86. | |
| 2 | LAND E H. The retinex theory of color vision[J]. Scientific American, 1977, 237(6): 108-128. 10.1038/scientificamerican1277-108 | 
| 3 | JOBSON D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451-462. 10.1109/83.557356 | 
| 4 | JOBSON D J, RAHMAN Z, WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976. 10.1109/83.597272 | 
| 5 | 卫依雪,周冬明,王长城,等. 结合多分支结构和U-net的低照度图像增强[J]. 计算机工程与应用, 2022, 58(12): 199-208. 10.3778/j.issn.1002-8331.2011-0097 | 
| WEI Y X, ZHOU D M, WANG C C, et al. Low-light image enhancement using multi-branch structure and U-net[J]. Computer Engineering and Applications, 2022, 58(12): 199-208. 10.3778/j.issn.1002-8331.2011-0097 | |
| 6 | WANG S H, ZHENG J, HU H M, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22(9): 3538-3548. 10.1109/tip.2013.2261309 | 
| 7 | FU X Y, LIAO Y H, ZENG D L, et al. A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation[J]. IEEE Transactions on Image Processing, 2015, 24(12): 4965-4977. 10.1109/tip.2015.2474701 | 
| 8 | GUO X J, LI Y, LING H B. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993. 10.1109/tip.2016.2639450 | 
| 9 | FU X Y, ZENG D L, HUANG Y, et al. A fusion-based enhancing method for weakly illuminated images[J]. Signal Processing, 2016, 129: 82-96. 10.1016/j.sigpro.2016.05.031 | 
| 10 | 王萌萌,彭敦陆. Retinex-ADNet:一个低光照图像增强系统[J]. 小型微型计算机系统, 2022, 43(2): 367-371. | 
| WANG M M, PENG D L. Retinex-ADNet: a low-light image enhancement system[J]. Journal of Chinese Computer Systems, 2022, 43(2): 367-371. | |
| 11 | WEI C, WANG W J, YANG W H, et al. Deep Retinex decomposition for low-light enhancement[C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.155. 10.48550/arXiv.1808.04560 | 
| 12 | WANG W J, WEI C, YANG W H, et al. GLADNet: low-light enhancement network with global awareness[C]// Proceedings of the 13th IEEE International Conference on Automatic Face and Gesture Recognition. Piscataway: IEEE, 2018: 751-755. 10.1109/fg.2018.00118 | 
| 13 | LV F F, LU F, WU J H, et al. MBLLEN: low-light image/video enhancement using CNNs[C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.220. | 
| 14 | WANG R X, ZHANG Q, FU C W, et al. Underexposed photo enhancement using deep illumination estimation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 6842-6850. 10.1109/cvpr.2019.00701 | 
| 15 | JIANG Y F, GONG X Y, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349. 10.1109/tip.2021.3051462 | 
| 16 | GUO C L, LI C Y, GUO J C, et al. Zero-reference deep curve estimation for low-light image enhancement[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1777-1786. 10.1109/cvpr42600.2020.00185 | 
| 17 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. | 
| 18 | WANG L W, LIU Z S, SIU W C, et al. Lightening network for low-light image enhancement[J]. IEEE Transactions on Image Processing, 2020, 29: 7984-7996. 10.1109/tip.2020.3008396 | 
| 19 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. 10.1109/cvpr.2016.308 | 
| 20 | WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539. 10.1109/cvpr42600.2020.01155 | 
| 21 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 | 
| 22 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2022-06-07].. | 
| 23 | YANG W H, WANG W J, HUANG H F, et al. Sparse gradient regularized deep Retinex network for robust low-light image enhancement[J]. IEEE Transactions on Image Processing, 2021, 30: 2072-2086. 10.1109/tip.2021.3050850 | 
| 24 | DANG-NGUYEN D T, PASQUINI C, CONOTTER V, et al. RAISE: a raw images dataset for digital image forensics[C]// Proceedings of the 6th ACM Multimedia Systems Conference. New York: ACM, 2015: 219-224. 10.1145/2713168.2713194 | 
| 25 | LEE C, LEE C, KIM C S. Contrast enhancement based on layered difference representation[C]// Proceedings of the 2012 19th IEEE International Conference on Image Processing. Piscataway: IEEE, 2012: 965-968. 10.1109/icip.2012.6467022 | 
| 26 | MA K, ZENG K, WANG Z. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3345-3356. 10.1109/tip.2015.2442920 | 
| 27 | ZHANG L, ZHANG L, MOU X Q, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386. 10.1109/tip.2011.2109730 | 
| 28 | MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2012, 20(3): 209-212. 10.1109/lsp.2012.2227726 | 
| 29 | LI M D, LIU J Y, YANG W H, et al. Structure-revealing low-light image enhancement via robust Retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828-2841. 10.1109/tip.2018.2810539 | 
| 30 | YANG W H, WANG S Q, FANG Y M, et al. From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3060-3069. 10.1109/cvpr42600.2020.00313 | 
| [1] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. | 
| [2] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. | 
| [3] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. | 
| [4] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. | 
| [5] | 汪雨晴, 朱广丽, 段文杰, 李书羽, 周若彤. 基于交互注意力机制的心理咨询文本情感分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2393-2399. | 
| [6] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. | 
| [7] | 李钟华, 白云起, 王雪津, 黄雷雷, 林初俊, 廖诗宇. 基于图像增强的低照度人脸检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2588-2594. | 
| [8] | 莫尚斌, 王文君, 董凌, 高盛祥, 余正涛. 基于多路信息聚合协同解码的单通道语音增强[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2611-2617. | 
| [9] | 刘丽, 侯海金, 王安红, 张涛. 基于多尺度注意力的生成式信息隐藏算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2102-2109. | 
| [10] | 徐松, 张文博, 王一帆. 基于时空信息的轻量视频显著性目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2192-2199. | 
| [11] | 李大海, 王忠华, 王振东. 结合空间域和频域信息的双分支低光照图像增强网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2175-2182. | 
| [12] | 魏文亮, 王阳萍, 岳彪, 王安政, 张哲. 基于光照权重分配和注意力的红外与可见光图像融合深度学习模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2183-2191. | 
| [13] | 熊武, 曹从军, 宋雪芳, 邵云龙, 王旭升. 基于多尺度混合域注意力机制的笔迹鉴别方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2225-2232. | 
| [14] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. | 
| [15] | 毛典辉, 李学博, 刘峻岭, 张登辉, 颜文婧. 基于并行异构图和序列注意力机制的中文实体关系抽取模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2018-2025. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||