[1] PELED S,YESHURUN Y. Super resolution in MRI:application to human white matter fiber tract visualization by diffusion tensor imaging[J]. Magnetic Resonance in Medicine,2001,45(1):29-35. [2] SHI W,CABALLERO J,LEDIG C,et al. Cardiac image superresolution with global correspondence using multi-atlas patch match[C]//Proceedings of the 2013 Medical Image Computing and Computer-Assisted Intervention,LNCS 8151. Berlin:Springer, 2013:9-16. [3] 连逸亚, 吴小俊. 超深卷积神经网络的图像超分辨率重建研究[J]. 计算机工程,2019,45(1):217-220.(LIAN Y Y,WU X J. Research on image super-resolution reconstruction of super deep convolutional neural network[J]. Computer Engineering,2019,45(1):217-220.) [4] KIM K I,KWON Y. Single-image super-resolution using sparse regression and natural image prior[J]. IEEE Transactions on Patten Analysis and Machine Intelligence,2010,32(6):1127-1133. [5] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1981,29(6):1153-1160. [6] JIANG N, WANG L. Quantum image scaling using nearest neighbor interpolation[J]. Quantum Information Processing,2015, 14(5):1559-1571. [7] MASTYŁO M. Bilinear interpolation theorems and applications[J]. Journal of Functional Analysis,2013,265(2):185-207. [8] SCHULTZ R R,STEVEVSON R L. Extraction of high-resolution frames from video sequences[J]. IEEE Transactions on Image Processing,1996,5(6):996-1011. [9] IRANI M,PELEG S. Improving resolution by image registration[J]. Graphical Models and Image Processing,1991,53(3):231-239. [10] STARK H, OSKOUI P. High-resolution image recovery from image-plane arrays,using convex projections[J]. Journal of the Optical Society of America A:Optics and Image Science,1989,6(11):1715-1726. [11] YANG J,WRIGHT J,HUANG T S,et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing,2010,19(11):2861-2873. [12] DONG C,LOY C C,HE K,et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 2014 European Conference on Computer Vision,LNCS 8692. Cham:Springer,2014:184-199. [13] KIM J,LEE J K,LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1646-1654. [14] LEDIG C,THEIS L,HUSZÁR F,et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:105-114. [15] LIM B,SON S,KIM H,et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2017:1132-1140. [16] WANG F,TAX D M J. Survey on the attention based RNN model and its applications in computer vision[EB/OL].[2020-11-03]. https://arxiv.org/pdf/1601.06823.pdf. [17] ZHANG Y,LI K,WANG L,et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the 2018 European Conference on Computer Vision. LNCS 11211. Cham:Springer,2018:294-310. [18] LU Y,ZHOU Y,JIANG Z,et al. Channel attention and multilevel features fusion for single image super-resolution[C]//Proceedings of the 2018 IEEE Visual Communications and Image Processing. Piscataway:IEEE,2018:1-4. [19] LIU Y,WANG Y,LI N,et al. An attention-based approach for single image super resolution[C]//Proceedings of the 24th International Conference on Pattern Recognition. Piscataway:IEEE,2018:2777-2784. [20] HOWARD A G,ZHU M,CHEN B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2020-11-03]. https://arxiv.org/pdf/1704.04861.pdf. [21] MARTIN D,FOWLKES C,TAL D,et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision. Piscataway:IEEE,2001:416-423. [22] BEVILACQUA M,ROUMY A,GUILLEMOT C,et al. Lowcomplexity single image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of the 2012 British Machine Vision Conference. Durham:BMVA Press,2012:No. 135. [23] ZEYDE R,ELAD M,PROTTER M. On single image scale-up using sparse-representations[C]//Proceedings of the 2010 International Conference on Curves and Surfaces,LNCS 6920. Berlin:Springer,2010:711-730. |