[1] SCHÄFER M, DOLBY J, SRIDHARAN M, et al. Correct refactoring of concurrent java code[C]//Proceedings of the 2010 24th European Conference of Object-Oriented Programming,LNCS 6183. Berlin:Springer,2010:225-249. [2] ZHANG Y,SHAO S,LIU H,et al. Refactoring Java programs for customizable locks based on bytecode transformation[J]. IEEE Access,2019,7:66292-66303. [3] ZHANG Y,DONG S,ZHANG X,et al. Automated refactoring for StampedLock[J]. IEEE Access,2019,7:104900-104911. [4] YU T, PRADEL M. SyncProf:detecting, localizing, and optimizing synchronization bottlenecks[C]//Proceedings of the 2016 25th International Symposium on Software Testing and Analysis. New York:ACM,2016:389-400. [5] SCHÄFER M,SRIDHARAN M,DOLBY J,et al. Refactoring Java programs for flexible locking[C]//Proceedings of the 2011 33rd International Conference on Software Engineering. New York:ACM,2011:71-80. [6] ROSE J, SWAMY N, HICKS M. Dynamic inference of polymorphic lock types[J]. Science of Computer Programming, 2005,58(3):366-383. [7] BAUM M V. Refactoring for software transactional memory[D]. Austin:University of Texas at Austin,2011:12-14. [8] ERNST M D, LOVATO A, MACEDONIO D, et al. Locking discipline inference and checking[C]//Proceedings of the 2016 IEEE/ACM 38th International Conference on Software Engineering. Piscataway:IEEE,2016:1133-1144. [9] ERNST M D,MACEDONIO D,MERRO M,et al. Semantics for locking specifications[C]//Proceedings of the 2016 8th NASA Formal Methods Symposium,LNCS 9690. Cham:Springer,2016:355-372. [10] MCCLOSKEY B, ZHOU F, GAY D, et al. Autolocker:synchronization inference for atomic sections[C]//Proceedings of the 2006 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New York:ACM,2006:346-358. [11] ALON U,ZILBERSTEIN M,LEVY O,et al. Code2vec:learning distributed representations of code[J]. Proceedings of the ACM on Programming Languages,2019,3(POPL):Article No. 40. [12] ZHANG J,WANG X,ZHANG H,et al. A novel neural source code representation based on abstract syntax tree[C]//Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering. Piscataway:IEEE,2019:783-794. [13] RAYCHEV V,VECHEV M,KRAUSE A. Predicting program properties from "Big Code"[J]. Communications of the ACM, 2019,62(3):99-107. [14] MADEIRAL F,URLI S,MAIA M,et al. BEARS:an extensible Java bug benchmark for automatic program repair studies[C]//Proceedings of the 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering. Piscataway:IEEE,2019:468-478. [15] SAHA R K,LYU Y,LAM W,et al. Bugs. jar:a large-scale, diverse dataset of real-world Java bugs[C]//Proceedings of the 2018 ACM/IEEE 15th International Conference on Mining Software Repositories. New York:ACM,2018:10-13. [16] DOUZAS G, BACAO F. Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE[J]. Information Sciences,2019,501:118-135. [17] MU Y,LIU X,WANG L. A Pearson's correlation coefficient based decision tree and its parallel implementation[J]. Information Sciences,2018,435:40-58. [18] LI H B,WANG W,DING H W,et al. Trees weighting random forest method for classifying high-dimensional noisy data[C]//Proceedings of the 2010 IEEE 7th International Conference on E-Business Engineering. Piscataway:IEEE,2010:160-163. [19] 张家伟, 郭林明, 杨晓梅. 针对不平衡数据的过采样和随机森林改进算法[J]. 计算机工程与应用, 2020, 56(11):39-45. (ZHANG J W,GUO L M,YANG X M. Improved oversampling and random forest algorithm for imbalanced data[J]. Computer Engineering and Applications,2020,56(11):39-45.) [20] 郑伟, 马楠. 一种改进的决策树后剪枝算法[J]. 计算机与数字工程, 2015, 43(6):960-966, 971.(ZHENG W,MA N. An Improved post-pruning algorithm for decision tree[J]. Computer and Digital Engineering,2015,43(6):960-966,971.) [21] ABDOH A F,ABO RIZKA M,MAGHRABY F A. Cervical cancer diagnosis using random forest classifier with SMOTE and feature reduction techniques[J]. IEEE Access,2018,6:59475-59485. [22] TANG W,HU J,ZHANG H,et al. Kappa coefficient:a popular measure of rater agreement[J]. Shanghai Archives of Psychiatry, 2015,27(1):62-67. [23] 徐少成, 李东喜. 基于随机森林的加权特征选择算法[J]. 统计与决策, 2018, 34(18):25-28.(XU S C,LI D X. Weighted feature selection algorithm based on random forest[J]. Statistics and Decision,2018,34(18):25-28.) [24] 蒋艳凰, 赵强利. 机器学习方法[M]. 北京:电子工业出版社, 2009:56. (JIANG Y H, ZHAO Q L. Machine Learning Techniques[M]. Beijing:Publishing House of Electronics Industry,2009:56.) |