[1] QI C R,SU H,MO K,et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:652-660. [2] ZHOU Y,TUZEL O. VoxelNet:end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:4490-4499. [3] 彭育辉, 郑玮鸿, 张剑锋.基于深度学习的道路障碍物检测方法[J]. 计算机应用,2020,40(8):2428-2433.(PENG Y H, ZHENG W H,ZHANG J F. Deep learning-based on-road obstacle detection method[J]. Journal of Computer Applications,2020,40(8):2428-2433) [4] KU J,MOZIFIAN M,LEE J,et al. Joint 3D proposal generation and object detection from view aggregation[C]//Proceedings of the 2018 IEEE/RSJ Conference on Intelligent Robots and Systems. Piscataway:IEEE,2018:1-8. [5] CHEN X,MA H,WAN J,et al. Multi-view 3D object detection network for autonomous driving[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6526-6534. [6] 杜佳, 宋春林. 一种改进的毫米波雷达多目标检测算法[J]. 通信技术,2015,48(7):808-813.(DU J,SONG C L. A modified millimeter-wave radar multi-target detection algorithm[J]. Communications Technology,2015,48(7):808-813) [7] SCHUMANN O,WÖHLER C,HAHN M,et al. Comparison of random forest and long short-term memory network performances in classification tasks using radar[C]//Proceedings of the 2017 Workshop on Sensor Data Fusion:Trends, Solutions, Applications. Piscataway:IEEE,2017:1-6. [8] SCHUMANN O, HAHN M, DICKMANN J, et al. Semantic segmentation on radar point clouds[C]//Proceedings of the 21st International Conference on Information Fusion. Piscataway:IEEE,2018:2179-2186. [9] QI C R,YI L,SU H,et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:5005-5114. [10] DANZER A,GRIEBEL T,BACH M,et al. 2D car detection in radar data with PointNets[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference. Piscataway:IEEE,2019:61-66. [11] GÖHRING D,WANG M,SCHNÜRMACHER M,et al. Radar/lidar sensor fusion for car-following on highways[C]//Proceedings of the 5th International Conference on Automation,Robotics and Applications. Piscataway:IEEE,2011:407-412. [12] HAJRI H,RAHAL M C. Real time lidar and radar high-level fusion for obstacle detection and tracking with evaluation on a ground truth[J]. International Journal of Mechanical and Mechatronics Engineering,2018,129(8):821-827. [13] LEE H,CHAE H,YI K. A geometric model based 2D LiDAR/Radar sensor fusion for tracking surrounding vehicles[J]. IFACPapersOnLine,2019,52(8):130-135. [14] NABATI R,QI H. RRPN:radar region proposal network for object detection in autonomous vehicles[C]//Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway:IEEE,2019:3093-3097. [15] CHADWICK S,MADDERN W,NEWMAN P. Distant vehicle detection using radar and vision[C]//Proceedings of the 2019 International Conference on Robotics and Automation. Piscataway:IEEE,2019:8311-8317. [16] LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot MultiBox detector[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer, 2016:21-37. [17] CHANG S,ZHANG Y,ZHANG F,et al. Spatial attention fusion for obstacle detection using mmWave radar and vision sensor[J]. Sensors,2020,20(4):No. 956. [18] JOHN V,MITA S. RVNet:deep sensor fusion of monocular camera and radar for image-based obstacle detection in challenging environments[C]//Proceedings of the 2019 Pacific-Rim Symposium on Image and Video Technology, LNCS 11854. Cham:Springer,2019:351-364. [19] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:779-788. [20] NOBIS F,GEISSLINGER M,WEBER M,et al. A deep learning-based radar and camera sensor fusion architecture for object detection[C]//Proceedings of the 2019 Workshop on Sensor Data Fusion:Trends, Solutions, Applications. Piscataway:IEEE, 2019:1-7. [21] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:6000-6010. [22] 卢玲, 杨武, 王远伦, 等. 结合注意力机制的长文本分类方法[J]. 计算机应用,2018,38(5):1272-1277.(LU L,YANG W, WANG Y L,et al. Long text classification combined with attention mechanism[J]. Journal of Computer Applications,2018,38(5):1272-1277.) [23] XIAO T,XU Y,YANG K,et al. The application of two-level attention models in deep convolutional neural network for finegrained image classification[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:842-850. [24] HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:7132-7141. [25] WANG X,GIRSHICK R,GUPTA A,et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7794-7803. [26] LANG A H,VORA S,CAESAR H,et al. PointPillars:fast encoders for object detection from point clouds[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:12689-12697. [27] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE 2016:770-778. [28] CAESAR H,BANKITI V,LANG A H,et al. nuScenes:a multimodal dataset for autonomous driving[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2020:11618-11628. [29] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:2999-3007. [30] YE Y,CHEN H,ZHANG C,et al. SARPNET:shape attention regional proposal network for liDAR-based 3D object detection[J]. Neurocomputing,2020,379:53-63. [31] SIMONELLI A,BULÒ S R,PORZI L,et al. Disentangling monocular 3D object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE,2019:1991-1999. |