[1] 蹇诗婕, 卢志刚, 杜丹, 等. 网络入侵检测技术综述[J]. 信息安全学报, 2020, 5(4):96-122.(JIAN S J,LU Z G,DU D,et al. Overview of network intrusion detection technology[J]. Journal of Cyber Security,2020,5(4):96-122.) [2] HUANG S, LEI K. IGAN-IDS:an imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks[J]. Ad Hoc Networks,2020,105:Article No. 102177. [3] CHAWLA N V,BOWYER K W,HALL L O,et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research,2002,16:321-357. [4] YANG Q,WU X. 10 challenging problems in data mining research[J]. International Journal of Information Technology and Decision Making,2006,5(4):597-604. [5] SMITH M R,MARTINEZ T,GIRAUD-CARRIER C. An instance level analysis of data complexity[J]. Machine Learning,2014,95(2):225-256 [6] 马志远, 曹宝香. 改进的决策树算法在入侵检测中的应用[J]. 计算机技术与发展, 2014, 24(1):151-154.(MA Z Y,CAO B X. Application of improved decision tree algorithm in intrusion detection system[J]. Computer Technology and Development, 2014,24(1):151-154.) [7] 夏景明, 李冲, 谈玲, 等. 改进的随机森林分类器网络入侵检测方法[J]. 计算机工程与设计, 2019, 40(8):2146-2150.(XIA J M, LI C,TAN L,et al. Improved random forest classifier network intrusion detection method[J]. Computer Engineering and Design, 2019,40(8):2146-2150.) [8] WANG M,LU Y,QIN J. A dynamic MLP-based DDoS attack detection method using feature selection and feedback[J]. Computers and Security,2020,88:Article No. 101645. [9] FERNÁNDEZ A,DEL JESUS M J,HERRERA F. Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets[J]. International Journal of Approximate Reasoning,2009,50(3):561-577. [10] Canadian Institute for Cybersecurity. Intrusion Detection Evaluation Dataset (CIC-IDS2017)[DS/OL].[2020-08-10]. https://www.unb.ca/cic/datasets/ids-2017.html. [11] LI X, CHEN W, ZHANG Q, et al. Building auto-encoder intrusion detection system based on random forest feature selection[J]. Computers and Security,2020,95:Article No. 101851. [12] TAN X,SU S,HUANG Z,et al. Wireless sensor networks intrusion detection based on SMOTE and the random forest algorithm[J]. Sensors,2019,19(1):Article No. 203. [13] HAN H,WANG W,MAO B. Borderline-SMOTE:a new oversampling method in imbalanced data sets learning[C]//Proceedings of the 2005 International Conference on Intelligent Computing,LNCS 3644. Berlin:Springer,2005:878-887. [14] HE H, BAI Y, GARCIA E A, et al. ADASYN:adaptive synthetic sampling approach for imbalanced learning[C]//Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). Piscataway:IEEE,2008:1322-1328. [15] AREFEEN M A,NIMI S T,RAHMAN M S. Neural networkbased undersampling techniques[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020(Early Access):1-10. [16] KABIR A,RUIZ C,ALVAREZ S A. Mixed bagging:a novel ensemble learning framework for supervised classification based on instance hardness[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway:IEEE, 2018:1073-1078. [17] LIM P, GOH C K, TAN K C. Evolutionary Cluster-based synthetic Oversampling ensemble(ECO-ensemble) for imbalance learning[J]. IEEE Transactions on Cybernetics,2017,47(9):2850-2861. [18] DOUZAS G,BACAO F,LAST F. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE[J]. Information Sciences,2018,465:1-20. [19] MCCALLUM A,NIGAM K,UNGAR L H. Efficient clustering of high-dimensional data sets with application to reference matching[C]//Proceedings of the 2000 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2000:169-178. [20] Canadian Institute for Cybersecurity. CIRA-CIC-DoHBrw-2020[DS/OL].[2020-08-10]. https://www.unb.ca/cic/datasets/dohbrw-2020.html. [21] MOUSTAFA N,SLAY J. UNSW-NB15:a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[C]//Proceedings of the 2015 Military Communications and Information Systems Conference. Piscataway:IEEE,2015:1-6. [22] Canadian Institute for Cybersecurity. CIC DoS dataset (2017)[DS/OL].[2020-08-10]. https://www.unb.ca/cic/datasets/dosdataset.html. [23] Canadian Institute for Cybersecurity. Botnet dataset[DS/OL].[2020-08-10]. https://www.unb.ca/cic/datasets/botnet.html. [24] PANIGRAHI R,BORAH S. A detailed analysis of CICIDS2017 dataset for designing intrusion detection systems[J]. International Journal of Engineering and Technology,2018,7:479-482. [25] ZHANG I, MANI I. KNN approach to unbalanced data distributions:a case study involving information extraction[EB/OL].[2020-09-04]. http://www.doc88.com/p-941569779259.html. |