[1] 陆杰, 李丰, 李炼. 分布式系统中的日志分析及应用[J]. 高技术通讯, 2019, 29(4):303-320.(LU J,LI F,LI L. Log analysis for distributed systems and its application[J]. High Technology Letters,2019,29(4):303-320.) [2] 胡珉, 白雪, 徐伟, 等. 多维时间序列异常检测算法综述[J]. 计算机应用, 2020, 40(6):1553-1564.(HU M,BAI X,XU W,et al. Review of anomaly detection algorithms for multidimensional time series[J]. Journal of Computer Applications,2020,40(6):1553-1564.) [3] 仇媛, 常相茂, 仇倩, 等. 基于长短期记忆网络和滑动窗口的流数据异常检测方法[J]. 计算机应用, 2020, 40(5):1335-1339.(QIU Y,CHANG X M,QIU Q,et al. Stream data anomaly detection method based on long short-term memory and sliding window[J]. Journal of Computer Applications,2020,40(5):1335-1339.) [4] NGUYEN H,SHEN Z,TAN Y,et al. FChain:toward black-box online fault localization for cloud systems[C]//Proceedings of the 2013 IEEE 33rd International Conference on Distributed Computing Systems. Piscataway:IEEE,2013:21-30. [5] WANG C. EbAT:online methods for detecting utility cloud anomalies[C]//Proceedings of the 2009 Middleware Doctoral Symposium. New York:ACM,2009:Article No. 4. [6] 贾统, 李影, 吴中海. 基于日志数据的分布式软件系统故障诊断综述[J]. 软件学报, 2020, 31(7):1997-2018.(JIA T,LI Y,WU Z H. Survey of state-of-the-art log-based failure diagnosis[J] Journal of Software,2020,31(7):1997-2018.) [7] XU W,HUANG L,FOX A,et al. Detecting large-scale system problems by mining console logs[C]//Proceedings of the 2009 ACM SIGOPS 22nd Symposium on Operating Systems Principles. New York:ACM,2009:117-132. [8] CHEN M,ZHENG A X,LLOYD J,et al. Failure diagnosis using decision trees[C]//Proceedings of the 20041st International Conference on Autonomic Computing. Piscataway:IEEE,2004:36-43. [9] LIANG Y,ZHANG Y,XIONG H,et al. Failure prediction in IBM BlueGene/L event logs[C]//Proceedings of the 2007 7th IEEE International Conference on Data Mining. Piscataway:IEEE, 2007:583-588. [10] HE S,ZHU J,HE P,et al. Experience report:system log analysis for anomaly detection[C]//Proceedings of the 2016 IEEE 27th International Symposium on Software Reliability Engineering. Piscataway:IEEE,2016:207-218. [11] YU X,JOSHI P,XU J,et al. CloudSeer:workflow monitoring of cloud infrastructures via interleaved logs[J]. ACM SIGARCH Computer Architecture News,2016,44(2):489-502. [12] TAK B C,TAO S,YANG L,et al. LOGAN:problem diagnosis in the cloud using log-based reference models[C]//Proceedings of the 2016 IEEE International Conference on Cloud Engineering. Piscataway:IEEE,2016:62-67. [13] NOVAES M P,CARVALHO L F,LLORET J,et al. Long shortterm memory and fuzzy logic for anomaly detection and mitigation in software-defined network environment[J]. IEEE Access, 2020,8:83765-83781. [14] DU M,LI F,ZHENG G,et al. DeepLog:anomaly detection and diagnosis from system logs through deep learning[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM,2017:1285-1298. [15] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. [16] BROWN A,TUOR A,HUTCHINSON B,et al. Recurrent neural network attention mechanisms for interpretable system log anomaly detection[C]//Proceedings of the 20181st Workshop on Machine Learning for Computing Systems. New York:ACM,2018:1-8. [17] LU S,WEI X,LI Y,et al. Detecting anomaly in big data system logs using convolutional neural network[C]//Proceedings of the 2018 IEEE 16th International Conference on Dependable, Autonomic and Secure Computing/the 16th International Conference on Pervasive Intelligence and Computing/the 4th International Conference on Big Data Intelligence and Computing and Cyber Science and Technology/the 3rd Cyber Science and Technology Congress. Piscataway:IEEE,2018:151-158. [18] 王易东, 刘培顺, 王彬. 基于深度学习的系统日志异常检测研究[J]. 网络与信息安全学报, 2019, 5(5):105-118.(WANG Y D, LIU P S,WANG B. Research on system log anomaly detection based on deep learning[J]. Chinese Journal of Network and Information Security,2019,5(5):105-118.) [19] MACMAHAN H B,HOLT G,SCULLEY D,et al. Ad click prediction:a view from the trenches[C]//Proceedings of the 2013 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2013:1222-1230. [20] 任明, 宋云奎. 基于深度学习的云计算系统异常检测方法[J]. 计算机技术与发展, 2019, 29(5):54-57.(REN M,SONG Y K. Anomaly detection for cloud computing systems based on deep learning[J]. Computer Technology and Development,2019,29(5):54-57.) [21] 杨瑞朋, 屈丹, 朱少卫, 等. 基于改进时间卷积网络的日志序列异常检测[J]. 计算机工程, 2020, 46(8):50-57.(YANG R P, QU D,ZHU S W,et al. Anomaly detection for log sequence based on improved temporal convolutional network[J]. Computer Engineering,2020,46(8):50-57.) [22] 钟雅, 郭渊博. 基于机器学习的日志解析系统设计与实现[J]. 计算机应用, 2018, 38(2):352-356.(ZHONG Y,GUO Y B. Design and implementation of log parsing system based on machine learning[J]. Journal of Computer Applications,2018,38(2):352-356.) [23] GUO S,LIU Z,CHEN W,et al. Event extraction from streaming system logs[C]//Proceedings of the 2018 International Conference on Information Science and Applications,LNEE 514. Singapore:Springer,2018:465-474. [24] BAI S,KOLTER J Z,KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL].[2020-08-22]. https://arxiv.org/pdf/1803.01271.pdf. [25] CARUANA R. Multitask learning[J]. Machine Learning,1997, 28(1):41-75. [26] LONG M,CAO Z,WANG J,et al. Learning multiple tasks with multilinear relationship networks[C]//Proceedings of the 201731st International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc.,2017:1594-1602. [27] MISRA I,SHRIVASTAVA A,GUPTA A,et al. Cross-stitch networks for multi-task learning[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:3994-4003. |