[1] ALFASSY A,KARLINSKY L,AIDES A,et al. LaSO:label-set operations networks for multi-label few-shot learning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:6541-6550. [2] ZHANG H, ZHANG J, KONIUSZ P. Few-shot learning via saliency-guided hallucination of samples[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:2765-2774. [3] CHEN Z,FU Y,WANG Y X,et al. Image deformation metanetworks for one-shot learning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:8672-8681. [4] FINN C,ABBEEL P,LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning. New York:JMLR. org,2017:1126-1135. [5] VINYALS O,BLUNDELL C,LILLICRAP T,et al. Matching networks for one shot learning[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2016:3637-3645. [6] SNELL J,SWERSKY K,ZEMEL R. Prototypical networks for fewshot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:4080-4090. [7] SCHWARTZ E,KARLINSKY L,FERIS R,et al. Baby steps towards few-shot learning with multiple semantics[EB/OL].[2020-08-20]. https://arxiv.org/pdf/1906.01905.pdf. [8] GARCIA V, BRUNA J. Few-shot learning with graph neural networks[EB/OL].[2020-08-20]. https://arxiv.org/pdf/1711.04043.pdf. [9] XING C,ROSTAMZADEH N,ORESHKIN B N,et al. Adaptive cross-modal few-shot learning[EB/OL].[2020-08-20]. https://arxiv.org/pdf/1902.07104.pdf. [10] DENG Y,REN Z,KONG Y,et al. A hierarchical fused fuzzy deep neural network for data classification[J]. IEEE Transactions on Fuzzy Systems,2017,25(4):1006-1012. [11] MUNKHDALAI T,YU H. Meta networks[C]//Proceedings of the 34th International Conference on Machine Learning. New York:JMLR. org,2017:2554-2563. [12] JAMAL M A,QI G. Task agnostic meta-learning for few-shot learning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:11711-11719. [13] LI Z,ZHOU F,CHEN F,et al. Meta-SGD:learning to learn quickly for few-shot learning[EB/OL].[2020-08-20]. https://arxiv.org/pdf/1707.09835.pdf. [14] YANG F,YANG Y,ZHANG L,et al. Learning to compare:relation network for few shot learning[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:1199-1208. [15] LI W,XU J,HUO J,et al. Distribution consistency based covariance metric networks for few-shot learning[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2019:8642-8649. [16] LAKE B M,SALAKHUTDINOV R,GROSS J,et al. One shot learning of simple visual concepts[J]. Proceedings of the Annual Meeting of the Cognitive Science Society,2011,33:2568-2573. [17] ORESHKIN B N,RODRIGUEZ P,ALEXANDRE L. TADAM:task dependent adaptive metric for improved few-shot learning[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2018:719-729. [18] WANG X,YU F,WANG R,et al. TAFE-Net:task-aware feature embeddings for low shot learning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:1831-1840. [19] SANTORO A,BARTUNOV S,BOTVINICK M,et al. One-shot learning with memory-augmented neural networks[C]//Proceedings of the 33rd International Conference on Machine Learning. New York:JMLR. org,2016:1842-1850. [20] TRIANTAFILLOU E,ZEMEL R,URTASUN R. Few-shot learning through an information retrieval lens[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc., 2017:2255-2265. [21] GIDARIS S,KOMODAKIS N. Generating classification weights with GNN denoising autoencoders for few-shot learning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:21-30. [22] ZHANG H, ZHANG J, KONIUSZ P. Few-shot learning via saliency-guided hallucination of samples[EB/OL]. (2019-04-06)[2020-03-12]. http://arxiv.org/abs/1904.03472v1. [23] BODYANSKIY Y,PELESHKO D,RASHKEVYCH Y,et al. The autoencoder based on generalized neo-fuzzy neuron and its fast learning for deep neural networks[C]//Proceedings of the IEEE 2nd International Conference on Data Stream Mining and Processing. Piscataway:IEEE,2018:113-118. [24] HU Z,BODYANSKIY Y,TYSHCHENKO O K. A deep cascade neural network based on extended neo-fuzzy neurons and its adaptive learning algorithm[C]//Proceedings of the IEEE 1st Ukraine Conference on Electrical and Computer Engineering. Piscataway:IEEE,2017:801-805. [25] ANGELOV P,GU X. A cascade of deep learning fuzzy rule-based image classifier and SVM[C]//Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway:IEEE,2017:746-751. [26] YEGANEJOU M, DICK S, MILLER J. Interpretable deep convolutional fuzzy classifier[J]. IEEE Transactions on Fuzzy Systems,2020,28(7):1407-1419 [27] XI Z, PANOUTSOS G. Interpretable machine learning:convolutional neural networks with RBF fuzzy logic classification rules[C]//Proceedings of the 2018 International Conference on Intelligent Systems. Piscataway:IEEE,2018:448-454. [28] YEGANEJOU M,DICK S. Improved deep fuzzy clustering for accurate and interpretable classifiers[C]//Proceedings of the 2019 IEEE International Conference on Fuzzy Systems. Piscataway:IEEE,2019:1-7. [29] ZADEH L A. Fuzzy sets[J]. Information and Control,1965,8(3):338-353. [30] MARINOS P N. Fuzzy logic and its application to switching systems[J]. IEEE Transactions on Computers,1969,C-18(4):343-348. [31] ZHANG H,LU J. Creating ensembles of classifiers via fuzzy clustering and deflection[J]. Fuzzy Sets and Systems,2010,161(13):1790-1802. [32] YUAN W,CHAO L. Online evolving interval type-2 intuitionistic fuzzy LSTM-neural networks for regression problems[J]. IEEE Access,2019,7:35544-35555. [33] KIM J,KIM T,KIM S,et al. Edge-labeling graph neural network for few-shot learning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:11-20. [34] CHEN W Y,LIU Y C,KIRA Z,et al. A closer look at few-shot classification[EB/OL].[2020-08-25]. https://arxiv.org/pdf/1904.04232.pdf. [35] 吴正文. 卷积神经网络在图像分类中的应用研究[D]. 成都:电子科技大学, 2015:1-4. (WU Z W. Application of convolutional neural network in image classification[D]. Chengdu:University of Electronic Science and Technology of China,2015:1-4.) [36] 鞠初旭. 模糊神经网络的研究及应用[D]. 成都:电子科技大学,2012:7-20. (JU C X. Research and application of fuzzy neural network[D]. Chengdu:University of Electronic Science and Technology of China,2012:7-20.) [37] SCHÖNFELD E,EBRAHIMI S,SINHA S,et al. Generalized zero- and few-shot learning via aligned variational autoencoders[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:8239-8247. [38] ZHOU J,CUI G,HU S,et al. Graph neural networks:a review of methods and applications[J]. AI Open,2020,1:57-81. [39] KOSKO B. Fuzzy systems as universal approximators[J]. IEEE Transactions on Computers,1994,43(11):1329-1333. |