[1] CHOI J Y,RO Y M,PLATANIOTIS K. Boosting color feature selection for color face recognition[J]. IEEE Transactions on Image Processing,2011,20(5):1425-1434. [2] ZHANG Y,LIU J,LUO Y,et al. Hybrid lip shape feature extraction and recognition for human-machine interaction[J]. International Journal of Modelling, Identification and Control, 2013,18(3):191-198. [3] BAGRI N,JOHARI P K. A comparative study on feature extraction using texture and shape for content based image retrieval[J]. International Journal of Advanced Science and Technology,2015, 80:41-52. [4] 方超, 赵林度. 基于虹膜识别的肉类食品可追溯系统研究[J]. 中国安全科学学报,2008,18(7):11-17.(FANG C,ZHAO L D. Research on meat food traceability system based on iris-recognition[J]. China Safety Science Journal,2008,18(7):11-17.) [5] LU Y,HE X,WEN Y,et al. A new cow identification system based on iris analysis and recognition[J]. International Journal of Biometrics,2014,6(1):18-32. [6] BARRON U G,CORKERY G,BARRY B,et al. Assessment of retinal recognition technology as a biometric method for sheep identification[J]. Computers and Electronics in Agriculture,2008, 60(2):156-166. [7] ZOU W Y,SOCHER R,CER D,et al. Bilingual word embeddings for phrase-based machine translation[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2013:1393-1398. [8] SANGVE S, MULE N. Lip recognition for authentication and security[J]. IOSR Journal of Computer Engineering,2014,16(3):18-23. [9] YAN S,HE S,LEI X,et al. Video face swap based on autoencoder generation network[C]//Processing of the 2018 International Conference on Audio, Language and Image Processing. Piscataway:IEEE,2018:103-108. [10] TROKIELEWICZ M, SZADKOWSKI M. Iris and periocular recognition in Arabian race horses using deep convolutional neural networks[C]//Proceedings of the 2017 IEEE International Joint Conference on Biometrics. Piscataway:IEEE,2017:510-516. [11] NGUYEN H,MACLAGAN S J,NGUYEN T D,et al. Animal recognition and identification with deep convolutional neural networks for automated wildlife monitoring[C]//Proceedings of the 2017 IEEE International Conference on Data Science and Advanced Analytics. Piscataway:IEEE,2017:40-49. [12] DE ARRUDA M D S,SPADON G,RODRIGUES J F,et al. Recognition of endangered Pantanal animal species using deep learning methods[C]//Proceedings of the 2018 International Joint Conference on Neural Networks. Piscataway:IEEE,2018:1-8. [13] HUANG G,LIU Z,MAATEN L V D,et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:2261-2269. [14] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [15] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1-9. [16] KLAMBAUER G,UNTERTHINER T,MAYR A,et al. Selfnormalizing neural networks[J]. Advances in Neural Information Processing Systems,2017,30:971-980. [17] GHIASI G,LIN T Y,LE Q V. DropBlock:a regularization method for convolutional networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2018:10750-10760. |