[1] ISKANDAR V,SALAMA C,TAHER M. Dynamic thread mapping for maximizing performance in power-efficient multi-core systems[C]//Proceedings of the 13th International Conference on Computer Engineering and Systems. Piscataway:IEEE,2018:230-235. [2] 安鑫, 张影, 康安, 等. 基于机器学习的异构多核处理器系统在线映射方法[J]. 计算机应用,2019,39(6):1753-1759.(AN X, ZHANG Y,KANG A,et al. Machine learning based mapping approach for heterogeneous multi-processors system[J]. Journal of Computer Applications,2019,39(6):1753-1759.) [3] ZHAO S,HAO C L,JIAN Z,et al. Energy-efficient phase-aware load balancing on asymmetric multicore processors[C]//Proceedings of the IEEE 4th International Conference on Computer and Communications. Piscataway:IEEE,2018:2575-2579. [4] SHEN X P,ZHONG Y T,DING C. Locality phase prediction[J]. ACM SIGPLAN Notices,2004,39(11):165-176. [5] ANSARI M, PASANDIDEH M, SABER-LATIBARI J, et al. Meeting thermal safe power in fault-tolerant heterogeneous embedded systems[J]. IEEE Embedded Systems Letters,2020,12(1):29-32. [6] RAPP M,PATHANIA A,MITRA T,et al. Prediction-based task migration on S-NUCA many-cores[C]//Proceedings of the 2019 Design,Automation and Test in Europe Conference and Exhibition. Piscataway:IEEE,2019:1579-1582. [7] KHDR H,PAGANI S,SOUSA É,et al. Power density-aware resource management for heterogeneous tiled multicores[J]. IEEE Transactions on Computers,2017,66(3):488-501. [8] PAGANI S,KHDR H,CHEN J J,et al. Thermal Safe Power (TSP):efficient power budgeting for heterogeneous manycore systems in dark silicon[J]. IEEE Transactions on Computers, 2017,66(1):147-162. [9] BASIREDDY K R, SINGH A K, AL-HASHIMI B M, et al. AdaMD:adaptive mapping and DVFS for energy-efficient heterogeneous multicores[J]. IEEE Transactions on ComputerAided Design of Integrated Circuits and Systems,2020,39(10):2206-2217. [10] 卢春鹏. 动态电压与频率调节在降低功耗中的作用[J]. 单片机与嵌入式系统应用,2007(5):12-14,17.(LU C P. Function of dynamic voltage and frequency scaling in power reduction[J]. Microcontrollers and Embedded Systems,2007(5):12-14.17.) [11] 张冬松, 陈芳园, 金士尧. 多核系统中基于动态电压频率调节的实时节能调度研究[J]. 计算机工程与科学,2010,32(9):157-164.(ZHANG D S,CHEN F Y,JIN S Y. Research on real-time energy-efficient scheduling in multi-core systems based on dynamic voltage frequency scaling[J]. Computer Engineering and Science,2007,32(9):157-164.) [12] HENKEL J,KHDR H,RAPP M. Smart thermal management for heterogeneous multicores[C]//Proceedings of the 2019 Automation and Test in Europe Conference and Exhibition. Piscataway:IEEE,2019:132-137. [13] EILALI A, AL-HASHIMI B, ELES P. A standby-sparing technique with low energy-overhead for fault-tolerant hard realtime systems[C]//Proceedings of the 7th IEEE/ACM International Conference on Hardware/Software Codesign and System Synthesis. New York:ACM,2009:193-202. [14] AWAN M A,MASSON D,TOVAR E. Energy efficient mapping of mixed criticality applications on unrelated heterogeneous multicore platforms[C]//Proceedings of the 11th IEEE Symposium on Industrial Embedded Systems. Piscataway:IEEE, 2016:1-10. [15] FANG J,ZONG H,ZHAO H Y,et al. Intelligent mapping method for power consumption and delay optimization based on heterogeneous NoC platform[J]. Electronics, 2019, 8(8):No. 912. [16] POY P,ALAM M M U,DAS N. Heuristic based task scheduling in multiprocessor systems with genetic algorithm by choosing the eligible processor[J]. International Journal of Distributed and Parallel Systems,2012,3(4):111-121. [17] EDUN A,VAZQUEZ R,GORDON-ROSS A,et al. Dynamic scheduling on heterogeneous multicores[C]//Proceedings of the 2019 Design,Automation and Test in Europe Conference and Exhibition. Piscataway:IEEE,2019:1685-1690. [18] 安鑫, 康安, 夏近伟, 等. 基于机器学习的异构感知多核调度方法[J]. 计算机应用,2020,40(10):3081-3087.(AN X,KANG A,XIA J W,et al. Heterogeneous sensing multi-core scheduling method based on machine learning[J]. Journal of Computer Applications,2020,40(10):3081-3087.) [19] NEMIROVSKY D, ARKOSE T, MARKOVIC N, et al. A machine learning approach for performance prediction and scheduling on heterogeneous CPUs[C]//Proceedings of the 29th International Symposium on Computer Architecture and High Performance Computing. Piscataway:IEEE,2017:121-128. [20] NEMIROVSKY D,ARKOSE T,MARKOVIC N,et al. A general guide to applying machine learning to computer architecture[J]. Supercomputing Frontiers and Innovations,2018,5(1):95-115. [21] WOO S C, OHARA M, TORRIE E, et al. The SPLASH-2 programs:characterization and methodological considerations[J]. ACM SIGARCH Computer Architecture News,1995,23(2):24-36. [22] McVOY L,STAELIN C. Lmbench:portable tools for performance analysis[C]//Proceedings of the 1996 USENIX Annual Technical Conference. Berkeley:USENIX Association,1996:279-294. [23] ANSARI M,SAFARI S,YEGANEH-KHAKSAR A,et al. Peak power management to meet thermal design power in fault-tolerant embedded systems[J]. IEEE Transactions on Parallel and Distributed Systems,2019,30(1):161-173. [24] GRENAT A, PANT S, RACHALA R, et al. 5.6 Adaptive clocking system for improved power efficiency in a 28nm x86-64 microprocessor[C]//Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers. Piscataway:IEEE,2014:106-107. [25] MARKOVIC N, NEMIROVSKY D, MILUTINOVIC V, et al. Hardware round-robin scheduler for single-ISA asymmetric multicore[C]//Proceedings of the 2015 European Conference on Parallel Processing, LNCS 9233. Berlin:Springer, 2015:122-134. |