[1] GREENHALGH A P. Big. LITTLE processing with ARM cortexTM-A15& cortex-A7[EB/OL].[2018-09-19]. https://www.arm.com/files/downloads/b-igLITTLE Final Final.pdf. [2] Apple Inc. A12-bionic[EB/OL].[2018-09-12]. https://www.apple.com/cn/iphone-xs/a12-bionic/. [3] LI C V, PETRUCCI V, MOSSE D. Predicting thread profiles across core types via machine learning on heterogeneous multiprocessors[C]//Proceedings of the 2016 VI Brazilian Symposium on Computing Systems Engineering. Piscataway, NJ:IEEE, 2016:56-62. [4] LE SUEUR E, HEISER G. Dynamic voltage and frequency scaling:The laws of diminishing returns[C]//HotPower 2010:Proceedings of the 2010 International Conference on Power Aware Computing and Systems. Berkeley, CA:USENIX Association, 2010:Article No. 1-8. [5] GOLI M, MCCALL J, BROWN C, et al. Mapping parallel programs to heterogeneous CPU/GPU architectures using a Monte Carlo tree search[C]//CEC 2013:Proceedings of the 2013 IEEE Congress on Evolutionary Computation. Piscataway, NJ:IEEE, 2013:2932-2939. [6] NEMIROVSKY D, ARKOSE T, MARKOVIC N, et al. A machine learning approach for performance prediction and scheduling on heterogeneous CPUs[C]//Proceedings of the 2017 IEEE 29th International Symposium on Computer Architecture and High Performance Computing. Piscataway, NJ:IEEE, 2017:121-128. [7] ZHANG Y Q, LAURENZANO M A, MARS J, et al. SMiTe:precise QoS prediction on real-system SMT processors to improve utilization in warehouse scale computers[C]//Proceedings of the 201447th Annual IEEE/ACM International Symposium on Microarchitecture. Washington, DC:IEEE Computer Society, 2014:406-418. [8] MICHALSKA M, CASALE-BRUNET S, BEZATI E, et al. High-precision performance estimation for the design space exploration of dynamic dataflow programs[J]. IEEE Transactions on Multi-Scale Computing Systems, 2018, 4(2):127-140. [9] SAYADI H, PATEL N, SASAN A, et al. Machine learning-based approaches for energy-efficiency prediction and scheduling in composite cores architectures[C]//Proceedings of the 201735th IEEE International Conference on Computer Design. Piscataway, NJ:IEEE, 2017:129-136. [10] WANG L, LIU S L, LU C, et al. Stable matching scheduler for single-ISA heterogeneous multi-core processors[C]//APPT 2015:Proceedings of the 2015 International Workshop on Advanced Parallel Processing Technologies, LNCS 9231. Cham:Springer, 2015:45-59. [11] ULLMAN J D. NP-complete scheduling problems[J]. Journal of Computer and System Sciences, 1975, 10(3):384-393. [12] ROY P, ALAM M M U, DAS N. Heuristic based task scheduling in multiprocessor systems with genetic algorithm by choosing the eligible processor[J]. International Journal of Distributed and Parallel Systems, 2012, 3(4):111-121. [13] CHATTERJEE N, PAUL S, MUKHERJEE P, et al. Deadline and energy aware dynamic task mapping and scheduling for network-on-chip based multi-core platform[J]. Journal of Systems Architecture, 2017, 74:61-77. [14] GHARSELLAOUI H, KTATA I, KHARROUBI N, et al. Real-time reconfigurable scheduling of multiprocessor embedded systems using hybrid genetic based approach[C]//Proceedings of the 2015 IEEE/ACIS 14th International Conference on Computer and Information Science. Piscataway, NJ:IEEE, 2015:605-609. [15] SINGH A K, SHAFIQUE M, KUMAR A, et al. Mapping on multi/many-core systems:survey of current and emerging trends[C]//DAC 2013:Proceedings of the 201350th ACM/EDAC/IEEE Design automation conference. Piscataway, NJ:IEEE, 2013:1-10. [16] CAI E, JUAN D C, GARG S, et al. Learning-based power/performance optimization for many-core systems with extended-range voltage/frequency scaling[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(8):1318-1331. [17] MICOLET P J, SMITH A, DUBACH C. A machine learning approach to mapping streaming workloads to dynamic multicore processors[C]//LCTES 2016:Proceedings of the 201617th ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools, and Theory for Embedded Systems. New York:ACM, 2016:113-122. [18] GAMATIE A, URSU R, SELVA M, et al. Performance prediction of application mapping in manycore systems with artificial neural networks[C]//Proceedings of the 2016 IEEE 10th International Symposium on Embedded Multicore/Many-core Systems-on-Chip. Piscataway, NJ:IEEE, 2016:185-192. [19] WEN Y, WANG Z, O'BOYLE M F P. Smart multi-task scheduling for OpenCL programs on CPU/GPU heterogeneous platforms[C]//HiPC 2014:Proceedings of the 201421st International Conference on High Performance Computing. Piscataway, NJ:IEEE, 2014:1-10. [20] TAYLOR B, MARCO V S, WANG Z. Adaptive optimization for OpenCL programs on embedded heterogeneous systems[C]//LCTES 2017:Proceedings of the 18th ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems. New York:ACM, 2017:11-20. [21] BITIRGEN R, IPEK E, MARTINEZ J F. Coordinated management of multiple interacting resources in chip multiprocessors:a machine learning approach[C]//MICRO 41:Proceedings of the 41st annual IEEE/ACM International Symposium on Microarchitecture. Washington, DC:IEEE Computer Society, 2008:318-329. [22] 袁景凌,缪旭阳,杨敏龙,等.基于神经网络的多核功耗预测策略[J].计算机科学,2014,41(6A):47-51.(JIAO J L, MIAO X Y, YANG M L, et al. Neural network based power prediction strategy for multi-core architecture[J]. Computer Science, 2014, 41(6A):47-51.) [23] 王彦华,乔建忠,林树宽,等.基于SVM的CPU-GPU异构系统任务分配模型[J].东北大学学报(自然科学版),2016,37(8):1089-1094.(WANG Y H, QIAO J Z, LIN S K, et al. A Task allocation model for CPU-GPU heterogeneous system based on SVMs[J]. Journal of Northeastern University (Natural Science), 2016, 37(8):1089-1094.) [24] AN X, BOUMEDIEN S, GAMATIE A, et al. CLASSY:a clock analysis system for rapid prototyping of embedded applications on MPSoCs[C]//SCOPES 2012:Proceedings of the 201215th International Workshop on Software and Compilers for Embedded Systems. New York:ACM, 2012:3-12. [25] HAYKIN S S. Neural Networks:a Comprehensive Foundation[M]. Upper Saddle River, NJ:Prentice Hall, 1994:133-147. [26] KINGMA D P, BA J L. Adam:a method for stochastic optimization[EB/OL].[2018-09-19]. https://www.docin.com/p-1725989690.html. [27] HOLLAND J H. Adaptation in Natural and Artificial Systems:an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence[M]. Cambridge, MA:MIT press, 1992:32-58. [28] AN X, GAMATIE A, RUTTEN E. High-level design space exploration for adaptive applications on multiprocessor systems-on-chip[J]. Journal of Systems Architecture, 2015, 61(3/4):172-184. [29] LEE E A, SANGIOVANNI-VINCENTELLI A. A framework for comparing models of computation[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1998, 17(12):1217-1229. [30] MARKOVIC N, NEMIROVSKY D, MILUTINOVIC V, et al. Hardware round-robin scheduler for single-ISA asymmetric multi-core[C]//Euro-Par 2015:Proceedings of the 2015 European Conference on Parallel Processing, LNCS 9233. Berlin:Springer, 2015:122-134. |