[1] 赵姗, 杨秋松, 李明树. 性能非对称多核处理器下异构感知调度技术[J]. 软件学报,2019,30(4):304-330.(ZHAO S,YANG Q S,LI M S. Heterogenity-aware scheduling research on performance asymmetric multicore processors[J]. Journal of Software,2019,30(4):304-330.) [2] BLAKE G,DRESLINSKI R G,MUDGE T. A survey of multicore processors[J]. IEEE Signal Processing Magazine,2009,26(6):26-37. [3] KAMDAR S,KAMDAR N. big. LITTLE architecture:heteroge-neous multicore processing[J]. International Journal of Computer Applications,2015,119(1):35-38. [4] DAVIDSON J,LIEBALD B,LIU J,et al. The YouTube video recommendation system[C]//Proceedings of the 4th ACM Conference on Recommender Systems. New York:ACM,2010:293-296. [5] WESTON J, MAKADIA A, YEE H. Label partitioning for sublinear ranking[C]//Proceedings of the 30th International Conference on Machine Learning. New York:JMLR. org,2013:181-189. [6] 安鑫, 张影, 康安, 等. 一种基于机器学习的异构多核处理器系统在线映射方法[J]. 计算机应用,2019,39(6):1753-1759.(AN X,ZHANG Y,KANG A,et al. Machine learning based mapping approach for heterogeneous multi-processors system[J]. Journal of Computer Applications,2019,39(6):1753-1759.) [7] ZHANG Y,LAURENZANO M A,MARS J,et al. SMiTe:precise QoS prediction on real-system SMT processors to improve utilization in warehouse scale computers[C]//Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture. Piscataway:IEEE,2014:406-418. [8] MICHALSKA M,CASALE-BRUNET S,BEZATI E,et al. Highprecision performance estimation for the design space exploration of dynamic dataflow programs[J]. IEEE Transactions on Multi-Scale Computing Systems,2018,4(2):127-140. [9] SAYADI H,PATEL N,SASAN A,et al. Machine learning-based approaches for energy-efficiency prediction and scheduling in composite cores architectures[C]//Proceedings of the 2017 IEEE International Conference on Computer Design. Piscataway:IEEE, 2017:129-136. [10] WANG L,LIU S,LU C,et al. Stable matching scheduler for single-ISA heterogeneous multi-core processors[C]//Proceedings of the 2015 International Workshop on Advanced Parallel Processing Technologies,LNCS 9231. Cham:Springer,2015, 45-59. [11] SHERWOOD T,PERELMAN E,HAMERLY G,et al. Discovering and exploiting program phases[J]. IEEE Micro,2003,23(6):84-93. [12] ROY P,ALAM M M U,DAS N. Heuristic based task scheduling in multiprocessor systems with genetic algorithm by choosing the eligible processor[J]. International Journal of Distributed and Parallel Systems,2012,3(4):111-121. [13] CHATTERJEE N,PAUL S,MUKHERJEE P,et al. Deadline and energy aware dynamic task mapping and scheduling for Networkon-Chip based multi-core platform[J]. Journal of Systems Architecture,2017,74:61-77. [14] GHARSELLAOUI H,KTATA I,KHARROUBI N,et al. Realtime reconfigurable scheduling of multiprocessor embedded systems using hybrid genetic based approach[C]//Proceedings of the IEEE/ACIS 14th International Conference on Information Systems. Piscataway:IEEE,2015:605-609. [15] WEN Y, WANG Z, O'BOYLE M F P. Smart multi-task scheduling for OpenCL programs on CPU/GPU heterogeneous platforms[C]//Proceedings of the 21st International Conference on High Performance Computing. Piscataway:IEEE,2014:1-10. [16] CAI E,JUAN D C,GARG S,et al. Learning-based power/performance optimization for many-core systems with extendedrange voltage/frequency scaling[J]. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,2016, 35(8):1318-1331. [17] IMES C, HOFMEYR S, HOFFMANN H. Energy-efficient application resource scheduling using machine learning classifiers[C]//Proceedings of the 47th International Conference on Parallel Processing. New York:ACM,2018:No. 45. [18] SAWALHA L,BARNES R D. Phase-based scheduling and thread migration for heterogeneous multicore processors[C]//Proceedings of the 21st International Conference on Parallel Architectures and Compilation Techniques. Piscataway:IEEE, 2012:493-493. [19] RAPP M,PATHANIA A,MITRA T,et al. Prediction-based task migration on S-NUCA many-cores[C]//Proceedings of the 2019 Design, Automation and Test in Europe Conference and Exhibition. Piscataway:IEEE,2019:1579-1582. [20] SHEN X,ZHONG Y,DING C. Locality phase prediction[C]//Proceedings of the 11th International Conference on Architectural Support for Programming Languages and Operating Systems. New York:ACM,2004:165-176. [21] KUMAR R,TULLSEN D M,RANGANATHAN P,et al. SingleISA heterogeneous multi-core architectures for multithreaded workload performance[C]//Proceedings of the 31st International Symposium on Computer Architecture. Piscataway:IEEE,2004:64-75. [22] VAN CRAEYNEST K, JALEEL A, EECKHOUT L, et al. Scheduling heterogeneous multi-cores through Performance Impact Estimation (PIE)[C]//Proceedings of the 39th Annual International Symposium on Computer Architecture. Piscataway:IEEE,2012:213-224. [23] NEMIROVSKY D,ARKOSE T,MARKOVIC N,et al. A general guide to applying machine learning to computer architecture[J]. Supercomputing Frontiers and Innovations,2018,5(1):95-115. [24] CARLSON T E, HEIRMAN W, EYERMAN S, et al. An evaluation of high-level mechanistic core models[J]. ACM Transactions on Architecture and Code Optimization,2014,11(3):No. 28. [25] JONES M T. Inside the Linux 2.6 completely fair scheduler:providing fair access to CPUs since 2.6. 23[EB/OL].[2019-09-19]. https://developer.ibm.com/tutorials/l-completely-fairscheduler/. [26] Intel. Intel 64 and IA-32 architectures optimization reference manual[EB/OL].[2019-09-12]. https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architecturesoptimization-manual.pdf. |