《计算机应用》唯一官方网站 ›› 2021, Vol. 41 ›› Issue (11): 3200-3205.DOI: 10.11772/j.issn.1001-9081.2020121974
收稿日期:
2020-12-15
修回日期:
2021-07-28
接受日期:
2021-08-03
发布日期:
2021-05-11
出版日期:
2021-11-10
通讯作者:
何昭水
作者简介:
刘太亨(1993—),男,广东肇庆人,博士研究生,主要研究方向:缺陷检测、深度学习、推荐系统基金资助:
Received:
2020-12-15
Revised:
2021-07-28
Accepted:
2021-08-03
Online:
2021-05-11
Published:
2021-11-10
Contact:
Zhaoshui HE
About author:
LIU Taiheng, born in 1993, Ph. D. candidate. His research
interests include defect detection,deep learning,recommendation systemSupported by:
摘要:
针对传统的表面缺陷检测方法只能对具有高对比度或低噪声的明显缺陷轮廓进行检测的问题,提出了一种基于自编码和知识蒸馏的表面缺陷检测方法来准确定位和分类从实际工业环境捕获的输入图像中出现的缺陷。首先,设计了一种级联自动编码器(CAE)架构用于分割和定位缺陷,其目的是将输入的原始图像转换为基于CAE的预测蒙版;其次,利用阈值模块对预测结果进行二值化以获得准确的缺陷轮廓;然后,把缺陷区域检测器提取并裁剪出来的缺陷区域视为下一个模块的输入;最后,将CAE分割结果的缺陷区域通过知识蒸馏进行类别分类。实验结果表明,与其他几种表面缺陷检测方法相比,所提出的方法综合性能最好,其缺陷检测平均准确率为97.00%。该方法能够有效地对较小的、边缘不清晰的缺陷进行分割,满足对物品表面缺陷实时分割检测的工程要求。
中图分类号:
刘太亨, 何昭水. 基于自编码和知识蒸馏的表面缺陷检测方法[J]. 计算机应用, 2021, 41(11): 3200-3205.
Taiheng LIU, Zhaoshui HE. Surface defect detection method based on auto-encoding and knowledge distillation[J]. Journal of Computer Applications, 2021, 41(11): 3200-3205.
卷积层 | Atrous因子 | 卷积大小 | 卷积层 | Atrous因子 | 卷积大小 |
---|---|---|---|---|---|
3 | 2 | 7 | 4 | ||
5 | 2 | 9 | 4 |
表1 AE网络中空洞卷积的参数
Tab. 1 Parameters of atrous convolution in AE network
卷积层 | Atrous因子 | 卷积大小 | 卷积层 | Atrous因子 | 卷积大小 |
---|---|---|---|---|---|
3 | 2 | 7 | 4 | ||
5 | 2 | 9 | 4 |
数据集 | 方法 | Accuracy | Precision | Recall | IoU |
---|---|---|---|---|---|
DAGM | CrackIT | 0.771 9 | 0.768 4 | 0.743 2 | 0.578 1 |
MPS | 0.823 5 | 0.866 6 | 0.900 6 | 0.597 3 | |
CrackForest | 0.869 1 | 0.902 8 | 0.865 8 | 0.614 7 | |
U-Net | 0.898 3 | 0.920 2 | 0.932 1 | 0.652 6 | |
Mask-RCNN | 0.899 6 | 0.920 8 | 0.935 2 | 0.654 3 | |
Fast-RCNN | 0.900 4 | 0.923 7 | 0.938 9 | 0.662 5 | |
FCN | 0.902 3 | 0.925 4 | 0.943 3 | 0.665 4 | |
SD_AEKD | 0.964 7 | 0.939 2 | 0.957 8 | 0.819 2 | |
Magnetic-tile | CrackIT | 0.813 5 | 0.791 3 | 0.754 2 | 0.674 2 |
MPS | 0.837 3 | 0.882 7 | 0.910 4 | 0.690 7 | |
CrackForest | 0.871 6 | 0.911 8 | 0.869 8 | 0.708 1 | |
U-Net | 0.908 1 | 0.926 9 | 0.928 7 | 0.764 9 | |
Mask-RCNN | 0.909 8 | 0.927 3 | 0.929 6 | 0.768 2 | |
Fast-RCNN | 0.911 4 | 0.929 4 | 0.935 8 | 0.770 6 | |
FCN | 0.913 7 | 0.930 2 | 0.944 9 | 0.782 4 | |
SD_AEKD | 0.975 2 | 0.940 9 | 0.963 1 | 0.901 8 |
表2 不同方法在物品表面缺陷检测上的性能指标对比
Tab. 2 Performance index comparison of different methods in item surface defect detection
数据集 | 方法 | Accuracy | Precision | Recall | IoU |
---|---|---|---|---|---|
DAGM | CrackIT | 0.771 9 | 0.768 4 | 0.743 2 | 0.578 1 |
MPS | 0.823 5 | 0.866 6 | 0.900 6 | 0.597 3 | |
CrackForest | 0.869 1 | 0.902 8 | 0.865 8 | 0.614 7 | |
U-Net | 0.898 3 | 0.920 2 | 0.932 1 | 0.652 6 | |
Mask-RCNN | 0.899 6 | 0.920 8 | 0.935 2 | 0.654 3 | |
Fast-RCNN | 0.900 4 | 0.923 7 | 0.938 9 | 0.662 5 | |
FCN | 0.902 3 | 0.925 4 | 0.943 3 | 0.665 4 | |
SD_AEKD | 0.964 7 | 0.939 2 | 0.957 8 | 0.819 2 | |
Magnetic-tile | CrackIT | 0.813 5 | 0.791 3 | 0.754 2 | 0.674 2 |
MPS | 0.837 3 | 0.882 7 | 0.910 4 | 0.690 7 | |
CrackForest | 0.871 6 | 0.911 8 | 0.869 8 | 0.708 1 | |
U-Net | 0.908 1 | 0.926 9 | 0.928 7 | 0.764 9 | |
Mask-RCNN | 0.909 8 | 0.927 3 | 0.929 6 | 0.768 2 | |
Fast-RCNN | 0.911 4 | 0.929 4 | 0.935 8 | 0.770 6 | |
FCN | 0.913 7 | 0.930 2 | 0.944 9 | 0.782 4 | |
SD_AEKD | 0.975 2 | 0.940 9 | 0.963 1 | 0.901 8 |
数据集 | 方法 | Accuracy | Precision | Recall |
---|---|---|---|---|
DAGM | GLCM | 0.728 6 | 0.704 5 | 0.684 7 |
HOG | 0.689 9 | 0.648 3 | 0.632 2 | |
HOG+SOBEL | 0.697 6 | 0.656 1 | 0.643 5 | |
SD_AEKD | 0.904 1 | 0.897 7 | 0.886 4 | |
Magnetic-tile | GLCM | 0.832 9 | 0.859 3 | 0.832 7 |
HOG | 0.781 4 | 0.827 5 | 0.814 6 | |
HOG+SOBEL | 0.763 5 | 0.804 1 | 0.791 3 | |
SD_AEKD | 0.942 6 | 0.938 6 | 0.902 3 |
表3 不同方法在物品表面缺陷分类上的性能指标对比
Tab. 3 Performance index comparison of different methods in item surface defect classification
数据集 | 方法 | Accuracy | Precision | Recall |
---|---|---|---|---|
DAGM | GLCM | 0.728 6 | 0.704 5 | 0.684 7 |
HOG | 0.689 9 | 0.648 3 | 0.632 2 | |
HOG+SOBEL | 0.697 6 | 0.656 1 | 0.643 5 | |
SD_AEKD | 0.904 1 | 0.897 7 | 0.886 4 | |
Magnetic-tile | GLCM | 0.832 9 | 0.859 3 | 0.832 7 |
HOG | 0.781 4 | 0.827 5 | 0.814 6 | |
HOG+SOBEL | 0.763 5 | 0.804 1 | 0.791 3 | |
SD_AEKD | 0.942 6 | 0.938 6 | 0.902 3 |
1 | XIAO Z T, LENG Y Y, GENG L, et al. Defect detection and classification of galvanized stamping parts based on fully convolution neural network [C]// Proceedings of the 2018 9th International Conference on Graphic and Image Processing. Bellingham: SPIE, 2018: Article No.106150K. 10.1117/12.2303601 |
2 | TSANG C S C, NGAN H Y T, PANG G K H. Fabric inspection based on the Elo rating method [J]. Pattern Recognition, 2016, 51: 378-394. 10.1016/j.patcog.2015.09.022 |
3 | 贺振东,王耀南,刘洁,等.基于背景差分的高铁钢轨表面缺陷图像分割[J].仪器仪表学报,2016,37(3):640-649. 10.3969/j.issn.0254-3087.2016.03.022 |
HE Z D, WANG Y N, LIU J, et al. Background differencing-based high-speed rail surface defect image segmentation [J]. Chinese Journal of Scientific Instrument, 2016, 37(3): 640-649. 10.3969/j.issn.0254-3087.2016.03.022 | |
4 | YAN Y P, KANEKO S, ASANO H. Accumulated and aggregated shifting of intensity for defect detection on micro 3D textured surfaces [J]. Pattern Recognition, 2020, 98: Article No.107057. 10.1016/j.patcog.2019.107057 |
5 | HECHT-NIELSEN R. Theory of the backpropagation neural network [J]. Neural Networks, 1988, 1(S1): 445. 10.1016/0893-6080(88)90469-8 |
6 | LIN C F, WANG S D. Fuzzy support vector machines [J]. IEEE Transactions on Neural Networks, 2002, 13(2): 464-471. 10.1109/72.991432 |
7 | JEON Y J, CHOI D C, YUN J P, et al. Detection of scratch defects on slab surface [C]// Proceedings of the 2011 11th International Conference on Control, Automation and Systems. Piscataway: IEEE, 2011: 1274-1278. |
8 | SONG K C, YAN Y H. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects [J]. Applied Surface Science, 2013, 285(Pt B): 858-864. 10.1016/j.apsusc.2013.09.002 |
9 | DING S M, LIU Z F, LI C L. AdaBoost learning for fabric defect detection based on HOG and SVM [C]// Proceedings of the 2011 International Conference on Multimedia Technology. Piscataway: IEEE, 2011: 2903-2906. 10.1109/icmt.2011.6001937 |
10 | CHONDRONASIOS A, POPOV I, JORDANOV I. Feature selection for surface defect classification of extruded aluminum profiles [J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(1/2/3/4): 33-41. 10.1007/s00170-015-7514-3 |
11 | HAO X, ZHANG G G, MA S. Deep learning [J]. International Journal of Semantic Computing, 2016, 10(3): 417-439. 10.1142/s1793351x16500045 |
12 | TAO X, ZHANG D P, MA W Z, et al. Automatic metallic surface defect detection and recognition with convolutional neural networks [J]. Applied Sciences, 2018, 8(9): Article No.1575. 10.3390/app8091575 |
13 | YU Z Y, WU X J, GU X D. Fully convolutional networks for surface defect inspection in industrial environment [C]// Proceedings of the 2017 International Conference on Computer Vision Systems, LNCS10528. Cham: Springer, 2017: 417-426. |
14 | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network [EB/OL]. (2015-03-09) [2020-11-22]. . |
15 | ROMERO A, BALLAS N, KAHOU S E, et al. FitNets: hints for thin deep nets [EB/OL]. (2015-03-27) [2020-11-22].. |
16 | LI Q Q, JIN S Y, YAN J J. Mimicking very efficient network for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 7341-7349. 10.1109/cvpr.2017.776 |
17 | WEI Y, PAN X Y, QIN H W, et al. Quantization mimic: towards very tiny CNN for object detection [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11212. Cham: Springer, 2018: 274-290. |
18 | TANG S T, FENG L T, SHAO W Q, et al. Learning efficient detector with semi-supervised adaptive distillation [C]// Proceedings of the 2019 British Machine Vision Conference. Durham: BMVA Press, 2019: Article No.21. |
19 | LIU Y F, CHEN K, LIU C, et al. Structured knowledge distillation for semantic segmentation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2599-2608. 10.1109/cvpr.2019.00271 |
20 | HE T, SHEN C H, TIAN Z, et al. Knowledge adaptation for efficient semantic segmentation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 578-587. 10.1109/cvpr.2019.00067 |
21 | SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5686-5696. 10.1109/cvpr.2019.00584 |
22 | OLIVEIRA H, CORREIA P L. CrackIT — an image processing toolbox for crack detection and characterization [C]// Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway: IEEE, 2014: 798-802. 10.1109/icip.2014.7025160 |
23 | AMHAZ R, CHAMBON S, IDIER J, et al. Automatic crack detection on two-dimensional pavement images: an algorithm based on minimal path selection [J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2718-2729. 10.1109/tits.2015.2477675 |
24 | SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forests [J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445. 10.1109/tits.2016.2552248 |
25 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS9351. Cham: Springer, 2015: 234-241. |
26 | HU B, WANG J H. Detection of PCB surface defects with improved faster-RCNN and feature pyramid network [J]. IEEE Access, 2020, 8: 108335-108345. 10.1109/access.2020.3001349 |
27 | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. 10.1109/iccv.2017.322 |
[1] | 张成, 万源, 强浩鹏. 基于知识蒸馏的深度无监督离散跨模态哈希[J]. 计算机应用, 2021, 41(9): 2523-2531. |
[2] | 黄继爽, 张华, 李永龙, 赵皓, 王皓冉, 冯春成. 基于动态特征蒸馏的水工隧洞缺陷识别方法[J]. 计算机应用, 2021, 41(8): 2358-2365. |
[3] | 吴则举, 焦翠娟, 陈亮. 基于改进Faster R-CNN的轮胎缺陷检测方法[J]. 计算机应用, 2021, 41(7): 1939-1946. |
[4] | 张元钧, 张曦煌. 基于图卷积与长短期记忆网络的动态网络表示学习模型[J]. 计算机应用, 2021, 41(7): 1857-1864. |
[5] | 高钦泉, 黄炳城, 刘文哲, 童同. 基于改进CenterNet的竹条表面缺陷检测方法[J]. 计算机应用, 2021, 41(7): 1933-1938. |
[6] | 史杨潇, 章军, 陈鹏, 王兵. 基于轻量级网络的钢铁表面缺陷分类[J]. 计算机应用, 2021, 41(6): 1836-1841. |
[7] | 孙鹤立, 孙玉柱, 张晓云. 基于生成对抗网络的事件描述生成[J]. 计算机应用, 2021, 41(5): 1256-1261. |
[8] | 樊玮, 王慧敏, 邢艳. 基于自编码器的多视图属性网络表示学习模型[J]. 计算机应用, 2021, 41(4): 1064-1070. |
[9] | 谭兆一, 陈白帆. 基于坐标逆映射的增强型车辆三维全景影像[J]. 计算机应用, 2021, 41(4): 1165-1171. |
[10] | 楼豪杰, 郑元林, 廖开阳, 雷浩, 李佳. 基于Siamese-YOLOv4的印刷品缺陷目标检测[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3206-3212. |
[11] | 屠红艳, 张挺, 夏鹏飞, 杜奕. 基于改进型变分自编码器的不确定性空间信息重建方法[J]. 计算机应用, 2021, 41(10): 2959-2963. |
[12] | 黄晓祥, 胡咏梅, 吴丹, 任力杰. 基于变分自编码器的异常颈动脉早期识别和预测[J]. 计算机应用, 2021, 41(10): 3082-3088. |
[13] | 魏淳武, 赵涓涓, 唐笑先, 强彦. 基于多时期蒸馏网络的随访数据知识提取方法[J]. 计算机应用, 2021, 41(10): 2871-2878. |
[14] | 李自强, 王正勇, 陈洪刚, 李林怡, 何小海. 基于外观和动作特征双预测模型的视频异常行为检测[J]. 计算机应用, 2021, 41(10): 2997-3003. |
[15] | 张京爱, 王江涛. 基于多尺度卷积神经网络和类内mixup操作的磁瓦表面质量识别[J]. 计算机应用, 2021, 41(1): 275-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||