[1] National Lung Screening Trial Research Team. Reduced lungcancer mortality with low-dose computed tomographic screening[J]. The New England Journal of Medicine, 2011, 365(5):395-409. [2] HUANG P, LIN C T, LI Y L, et al. Prediction of lung cancer risk at follow-up screening with low-dose CT:a training and validation study of a deep learning method[J]. The Lancet Digital Health, 2019, 1(7):e353-e362. [3] ARDILA D, KIRALY A P, BHARADWAJ S, et al. End-to-end lung cancer screening with three-dimensional deep learning on lowdose chest computed tomography[J]. Nature Medicine, 2019, 25(6):954-961. [4] SUNG F, YANG Y X, ZHANG L, et al. Learning to compare:relation network for few-shot learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:1199-1208. [5] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for fewshot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates, Inc., 2017:4080-4090. [6] SANTORO A, BARTUNOV S, BOTVINICK M, et al. One-shot learning with memory-augmented neural networks[C]//Proceedings of the 33rd International Conference on Machine Learning. New York:JMLR. org, 2016:1842-1850. [7] REN M Y, TRIANTAFILLOU E, RAVI S, et al. Meta-learning for semi-supervised few-shot classification[EB/OL]. (2018-03-02)[2020-08-01]. https://arxiv.org/pdf/1803.00676.pdf. [8] SUN Q R, LIU Y Y, CHUA T S, et al. Meta-transfer learning for few-shot learning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:403-412. [9] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2):199-210. [10] WANG D, ZHANG Y, ZHANG K X, et al. FocalMix:semisupervised learning for 3D medical image detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020:3950-3959. [11] PINSKY P F, GIERADA D S, BLACK W, et al. Performance of Lung-RADS in the National Lung Screening Trial:a retrospective assessment[J]. Annals of Internal Medicine, 2015, 162(7):485-491. [12] MARTIN M D, KANNE J P, BRODERICK L S, et al. LungRADS:pushing the limits[J]. RadioGraphics, 2017, 37(7):1975-1993. [13] 杨健, 曹盼, 郭佑民. 肺部影像报告和数据系统(Lung-RADS 1.0)解读[J]. 中华放射学杂志, 2015, 49(4):244-248.(YANG J, CAO P, GUO Y M. Interpretation of Lung imaging Reporting And Data System (Lung-RADS 1.0)[J]. Chinese Journal of Radiology, 2015, 49(4):244-248.) [14] VEASEY B, FARHANGI M M, FRIGUI H, et al. Lung nodule malignancy classification based on NLSTx data[C]//Proceedings of the IEEE 17th International Symposium on Biomedical Imaging. Piscataway:IEEE, 2020:1870-1874. [15] PAUL R, HAWKINS S, SCHABATH M B, et al. Predicting malignant nodules by fusing deep features with classical radiomics features[J]. Journal of Medical Imaging, 2018, 5(1):No. 011022. [16] DEY R, LU Z J, HONGY. Diagnostic classification of lung nodules using 3D neural networks[C]//Proceedings of the IEEE 15th International Symposium on Biomedical Imaging. Piscataway:IEEE, 2018:774-778. [17] HUSSEIN S, CAO K L, SONG Q, et al. Risk stratification of lung nodules using 3D CNN-based multi-task learning[C]//Proceedings of the 2017 International Conference on Information Processing in Medical Imaging, LNCS 10265. Cham:Springer, 2017:249-260. [18] XIE Y T, XIA Y, ZHANG J P, et al. Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT[J]. IEEE Transactions on Medical Imaging, 2019, 38(4):991-1004. [19] XIE Y T, ZHANG J P, XIA Y. Semi-supervised adversarial model for benign-malignant lung nodule classification on chest CT[J]. Medical Image Analysis, 2019, 57:237-248. [20] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL](2015-03-09)[2020-08-03]. https://arxiv.org/pdf/1503.02531.pdf. [21] ROMERO A, BALLAS N, KAHOU S E, et al. FitNets:hints for thin deep nets[EB/OL](2015-03-27)[2020-08-03]. https://arxiv.org/pdf/1412.6550.pdf. [22] YIM J, JOO D, BAE J, et al. A gift from knowledge distillation:fast optimization, network minimization and transfer learning[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:7130-7138. [23] ZAGORUYKO S, KOMODAKIS N. Paying more attention to attention:improving the performance of convolutional neural networks via attention transfer[EB/OL](2017-02-12)[2020-08-03]. https://arxiv.org/pdf/1612.03928.pdf. [24] CHEN Y C, LIN Y Y, YANG M H, et al. CrDoCo:pixel-level domain transfer with cross-domain consistency[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:1791-1800. [25] GUPTA S, HOFFMAN J, MALIK J. Cross modal distillation for supervision transfer[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:2827-2836. [26] ZHAO L, PENG X, CHEN Y X, et al. Knowledge as priors:cross-modal knowledge generalization for datasets without superior knowledge[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020:6527-6536. [27] LIU B L, RAO Y M, LU J W, et al. MetaDistiller:network selfboosting via meta-learned top-down distillation[C]//Proceedings of the 2020 European Conference on Computer Vision, LNCS 12359. Cham:Springer, 2020:694-709. [28] BALAJI Y, SANKARANARAYANAN S, CHELLAPPA R. MetaReg:towards domain generalization using meta-regularization[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc., 2018:1006-1016. |