| 1 | 曾接贤,倪申龙.改进的卷积神经网络单幅图像超分辨率重建[J].计算机工程与应用,2019,55(13):1-7. | 
																													
																						|  | ZENG J X, NI S L. Improved super-resolution reconstruction of single image based on convolution neural network [J]. Computer Engineering and Applications, 2019, 55(13): 1-7. | 
																													
																						| 2 | CHEN C, QI F. Single image super-resolution using deep CNN with dense skip connections and inception-ResNet [C]// Proceedings of the 2018 9th International Conference on Information Technology in Medicine and Education. Piscataway: IEEE, 2018: 999-1003. 10.1109/itme.2018.00222 | 
																													
																						| 3 | HUANG G, LIU Z, MAATEN L VAN DER, et al. Densely connected convolutional networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 | 
																													
																						| 4 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. 10.1109/cvpr.2015.7298594 | 
																													
																						| 5 | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning [C]// Proceedings of the 2017 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 4278-4284. | 
																													
																						| 6 | DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS8692. Cham: Springer, 2014: 184-199. | 
																													
																						| 7 | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1646-1654. 10.1109/cvpr.2016.182 | 
																													
																						| 8 | DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS9906. Cham: Springer, 2016: 391-407. | 
																													
																						| 9 | KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1637-1645. 10.1109/cvpr.2016.181 | 
																													
																						| 10 | TONG T, LI G, LIU X J, et al. Image super-resolution using dense skip connections [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4809-4817. 10.1109/iccv.2017.514 | 
																													
																						| 11 | ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2472-2481. 10.1109/cvpr.2018.00262 | 
																													
																						| 12 | TANG Z M, LI S H, LUO L K, et al. Image super-resolution via simplified dense network with non-degenerate layers [J]. IEEE Access, 2019, 7: 24775-24787. 10.1109/access.2019.2898846 | 
																													
																						| 13 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]// Proceedings of the 2015 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 448-456. | 
																													
																						| 14 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. 10.1109/cvpr.2016.308 | 
																													
																						| 15 | LI J C, FANG F M, MEI K F, et al. Multi-scale residual network for image super-resolution [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11212. Cham: Springer, 2018: 527-542. | 
																													
																						| 16 | QIN J Y, SUN X F, YAN Y T, et al. Multi-resolution space-attended residual dense network for single image super-resolution [J]. IEEE Access, 2020, 8: 40499-40511. 10.1109/access.2020.2976478 | 
																													
																						| 17 | TIMOFTE R, AGUSTSSON E, GOOL L VAN, et al. NTIRE 2017 challenge on single image super-resolution: methods and results [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1110-1121. | 
																													
																						| 18 | BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding [C]// Proceedings of the 2012 British Machine Vision Conference. Durham: BMVA Press, 2012: Article No.135. 10.5244/c.26.135 | 
																													
																						| 19 | ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations [C]// Proceedings of the 2010 7th International Conference on Curves and Surfaces, LNCS6920. Berlin: Springer, 2010: 711-730. | 
																													
																						| 20 | HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 5197-5206. 10.1109/cvpr.2015.7299156 | 
																													
																						| 21 | KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. [2020-12-22]. . | 
																													
																						| 22 | SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1874-1883. 10.1109/cvpr.2016.207 | 
																													
																						| 23 | LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5835-5843. 10.1109/cvpr.2017.618 | 
																													
																						| 24 | TAI Y, YANG J, LIU X M. Image super-resolution via deep recursive residual network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2790-2798. 10.1109/cvpr.2017.298 | 
																													
																						| 25 | TAI Y, YANG J, LIU X M, et al. MemNet: a persistent memory network for image restoration [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4549-4557. 10.1109/iccv.2017.486 |