《计算机应用》唯一官方网站 ›› 2021, Vol. 41 ›› Issue (11): 3228-3233.DOI: 10.11772/j.issn.1001-9081.2021010073
章悦1, 张亮1,2(), 谢非1,2, 杨嘉乐1, 张瑞1, 刘益剑1,2
收稿日期:
2021-01-14
修回日期:
2021-03-25
接受日期:
2021-04-06
发布日期:
2021-04-26
出版日期:
2021-11-10
通讯作者:
张亮
作者简介:
章悦(1995—),女,江苏南京人,硕士研究生,CCF 会员,主要研究方向:深度学习、计算机视觉、目标检测、实例分割Yue ZHANG1, Liang ZHANG1,2(), Fei XIE1,2, Jiale YANG1, Rui ZHANG1, Yijian LIU1,2
Received:
2021-01-14
Revised:
2021-03-25
Accepted:
2021-04-06
Online:
2021-04-26
Published:
2021-11-10
Contact:
Liang ZHANG
About author:
ZHANG Yue, born in 1995, M. S. candidate. Her research interests include deep learning, computer vision, target detection, instance segmentation摘要:
在交通安全领域,道路抛洒物易引发交通事故,构成了交通安全隐患。针对传统抛洒物检测方式识别率低、对于多类抛洒物检测效果不佳等问题,提出了一种基于实例分割模型CenterMask优化的道路抛洒物检测算法。首先,使用空洞卷积优化的残差网络ResNet50作为主干神经网络来提取特征并进行多尺度处理;然后,通过距离交并比(DIoU)函数优化的全卷积单阶段(FCOS)目标检测器实现对抛洒物的检测和分类;最后,使用空间注意力引导掩膜作为掩膜分割分支来实现对于目标形态的分割,并采用迁移学习的方式实现模型的训练。实验结果表明,所提算法对于抛洒物目标的检测率为94.82%,相较常见实例分割算法Mask R-CNN,所提的道路抛洒物检测算法在边界框检测上的平均精度(AP)提高了8.10个百分点。
中图分类号:
章悦, 张亮, 谢非, 杨嘉乐, 张瑞, 刘益剑. 基于实例分割模型优化的道路抛洒物检测算法[J]. 计算机应用, 2021, 41(11): 3228-3233.
Yue ZHANG, Liang ZHANG, Fei XIE, Jiale YANG, Rui ZHANG, Yijian LIU. Road abandoned object detection algorithm based on optimized instance segmentation model[J]. Journal of Computer Applications, 2021, 41(11): 3228-3233.
算法 | AP | AP50 | AP75 | APs | APm | APl |
---|---|---|---|---|---|---|
CenterMask | 54.30 | 89.50 | 65.60 | 47.20 | 66.80 | 59.30 |
CenterMask+DIoU | 59.40 | 89.20 | 67.50 | 53.30 | 74.80 | 53.50 |
CenterMask+ Dilated CNN | 60.40 | 91.30 | 71.00 | 49.80 | 73.90 | 66.60 |
本文算法 | 61.70 | 89.40 | 71.50 | 50.40 | 76.50 | 71.50 |
表1 道路抛洒物检测优化算法结果对比 ( %)
Tab. 1 Result comparison of optimization algorithms for road abandoned object detection
算法 | AP | AP50 | AP75 | APs | APm | APl |
---|---|---|---|---|---|---|
CenterMask | 54.30 | 89.50 | 65.60 | 47.20 | 66.80 | 59.30 |
CenterMask+DIoU | 59.40 | 89.20 | 67.50 | 53.30 | 74.80 | 53.50 |
CenterMask+ Dilated CNN | 60.40 | 91.30 | 71.00 | 49.80 | 73.90 | 66.60 |
本文算法 | 61.70 | 89.40 | 71.50 | 50.40 | 76.50 | 71.50 |
算法 | AP/% | 单张图像 平均耗时/s | 检测率/% | |
---|---|---|---|---|
边界框检测 | 掩膜分割 | |||
CenterMask | 54.30 | 52.40 | 0.28 | 93.39 |
Mask R-CNN | 53.60 | 50.30 | 0.35 | 93.14 |
YOLACT | 42.80 | 41.60 | 0.11 | 92.56 |
本文算法 | 61.70 | 54.10 | 0.29 | 94.82 |
表2 不同算法测试性能对比
Tab. 2 Comparison of test performance of different algorithms
算法 | AP/% | 单张图像 平均耗时/s | 检测率/% | |
---|---|---|---|---|
边界框检测 | 掩膜分割 | |||
CenterMask | 54.30 | 52.40 | 0.28 | 93.39 |
Mask R-CNN | 53.60 | 50.30 | 0.35 | 93.14 |
YOLACT | 42.80 | 41.60 | 0.11 | 92.56 |
本文算法 | 61.70 | 54.10 | 0.29 | 94.82 |
1 | KHATOONABADI S H, BAJIC I V. Video object tracking in the compressed domain using spatio-temporal Markov random field [J]. IEEE Transactions on Image Processing, 2013, 22(1): 300-313. 10.1109/tip.2012.2214049 |
2 | ASVADI A, PEIXOTO P, NUNES U. Detection and tracking of moving objects using 2.5D motion grid [C]// Proceedings of the IEEE 18th International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2015: 788-793. 10.1109/itsc.2015.133 |
3 | 汪贵平,马力旺,郭璐,等.高速公路抛洒物事件图像检测算法[J].长安大学学报(自然科学版),2017,37(5):81-88. 10.18057/icass2018.p.123 |
WANG G P, MA L W, GUO L, et al. Image detection algorithm for incident of discarded things in highway [J]. Journal of Chang’an University (Natural Science Edition), 2017, 37(5): 81-88. 10.18057/icass2018.p.123 | |
4 | 李清瑶,邹皓,赵群,等.基于帧间差分自适应法的车辆抛洒物检测[J].长春理工大学学报(自然科学版),2018,41(4):108-113. |
LI Q Y, ZOU H, ZHAO Q, et al. Vehicles throwing detection based on inter-frame difference adaptive method [J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2018, 41(4): 108-113. | |
5 | 金瑶,张锐,尹东.城市道路视频中小像素目标检测[J].光电工程,2019,46(9):74-81. 10.32657/10356/144136 |
JIN Y, ZHANG R, YIN D. Object detection for small pixel in urban roads videos [J]. Opto-Electronic Engineering, 2019, 46(9): 74-81. 10.32657/10356/144136 | |
6 | 程文冬,马勇,魏庆媛.驾驶人手机通话行为中基于图像特征决策融合的手势识别方法[J].交通运输工程学报,2019,19(4):171-181. 10.3969/j.issn.1671-1637.2019.04.016 |
CHENG W D, MA Y, WEI Q Y. Hand gesture recognition method in driver’s phone-call behavior based on decision fusion of image features [J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 171-181. 10.3969/j.issn.1671-1637.2019.04.016 | |
7 | 陆德彪,郭子明,蔡伯根,等.基于深度数据的车辆目标检测与跟踪方法[J].交通运输系统工程与信息,2018,18(3):55-62. 10.16097/j.cnki.1009-6744.2018.03.009 |
LU D B, GUO Z M, CAI B G, et al. A vehicle detection and tracking method based on range data [J]. Journal of Transportation System Engineering and Information Technology, 2018, 18(3): 55-62. 10.16097/j.cnki.1009-6744.2018.03.009 | |
8 | 孙首群,刘康亚,刘硕妍,等.铁路客运站复杂环境中的运动目标检测[J].交通运输工程学报,2013,13(3):113-120. 10.3969/j.issn.1671-1637.2013.03.016 |
SUN S Q, LIU K Y, LIU S Y, et al. Moving target detection in complex environment of railway station [J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 113-120. 10.3969/j.issn.1671-1637.2013.03.016 | |
9 | 周雨阳,龚艺,姚琳,等.无人机广域视频的机动车交通参数计算及分析[J].交通运输系统工程与信息,2015,15(6):67-73. 10.3969/j.issn.1009-6744.2015.06.011 |
ZHOU Y Y, GONG Y, YAO L, et al. Calculation and analysis of the traffic parameters of vehicles based on the wide-area drone video [J]. Journal of Transportation System Engineering and Information Technology, 2015, 15(6): 67-73. 10.3969/j.issn.1009-6744.2015.06.011 | |
10 | 郑文博,王坤峰,王飞跃.基于贝叶斯生成对抗网络的背景消减算法[J].自动化学报,2018,44(5):878-890. |
ZHENG W B, WANG K F, WANG F Y. Background subtraction algorithm with Bayesian generative adversarial networks [J]. Acta Automatica Sinica, 2018, 44(5): 878-890. | |
11 | 卢胜男,李小和.结合双向光流约束的特征点匹配车辆跟踪方法[J].交通运输系统工程与信息,2017,17(4):76-82. 10.16097/j.cnki.1009-6744.2017.04.012 |
LU S N, LI X H. Vehicle tracking method using feature point matching combined with bidirectional optical flow [J]. Journal of Transportation System Engineering and Information Technology, 2017, 17(4): 76-82. 10.16097/j.cnki.1009-6744.2017.04.012 | |
12 | 蔡彪,沈宽,付金磊,等.基于Mask R-CNN的铸件X射线DR图像缺陷检测研究[J].仪器仪表学报,2020,41(3):61-69. |
CAI B, SHEN K, FU J L, et al. Research on defect detection of X-ray DR images of casting based on Mask R-CNN [J]. Chinese Journal of Scientific Instrument, 2020, 41(3): 61-69. | |
13 | TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9626-9635. 10.1109/iccv.2019.00972 |
14 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
15 | YAMASHITA T, FURUKAWA H, FUJIYOSHI H. Multiple skip connections of dilated convolution network for semantic segmentation [C]// Proceedings of the 2018 25th IEEE International Conference on Image Processing. Piscataway: IEEE, 2018: 1593-1597. 10.1109/icip.2018.8451033 |
16 | ZHU X Z, CHENG D Z, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6687-6696. 10.1109/iccv.2019.00679 |
17 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 10.1109/tpami.2016.2577031 |
18 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 |
19 | MASCI J, GIUSTI A, CIRESAN D, et al. A fast learning algorithm for image segmentation with max-pooling convolutional networks [C]// Proceedings of the 2013 IEEE International Conference on Image Processing. Piscataway: IEEE, 2013: 2713-2717. 10.1109/icip.2013.6738559 |
20 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 |
21 | LIU Z C, WANG S. Broken corn detection based on an adjusted YOLO with focal loss [J]. IEEE Access, 2019, 7: 68281-68289. 10.1109/access.2019.2916842 |
22 | 丁松涛,曲仕茹.基于深度学习的交通目标感兴趣区域检测[J].中国公路学报,2018,31(9):167-174. 10.3969/j.issn.1001-7372.2018.09.019 |
DING S T, QU S R. Traffic object detection based on deep learning with region of interest selection [J]. China Journal of Highway and Transport, 2018, 31(9): 167-174. 10.3969/j.issn.1001-7372.2018.09.019 |
[1] | 赵宏, 孔东一. 图像特征注意力与自适应注意力融合的图像内容中文描述[J]. 计算机应用, 2021, 41(9): 2496-2503. |
[2] | 徐江浪, 李林燕, 万新军, 胡伏原. 结合目标检测的室内场景识别方法[J]. 计算机应用, 2021, 41(9): 2720-2725. |
[3] | 谢德峰, 吉建民. 融入句法感知表示进行句法增强的语义解析[J]. 计算机应用, 2021, 41(9): 2489-2495. |
[4] | 代雨柔, 杨庆, 张凤荔, 周帆. 基于自监督学习的社交网络用户轨迹预测模型[J]. 计算机应用, 2021, 41(9): 2545-2551. |
[5] | 马佳良, 陈斌, 孙晓飞. 基于改进的Faster R-CNN的通用目标检测框架[J]. 计算机应用, 2021, 41(9): 2712-2719. |
[6] | 郑志强, 胡鑫, 翁智, 王雨禾, 程曦. 基于改进DenseNet的牛眼图像特征提取方法[J]. 计算机应用, 2021, 41(9): 2780-2784. |
[7] | 陈成瑞, 孙宁, 何世彪, 廖勇. 面向C-V2X通信的基于深度学习的联合信道估计与均衡算法[J]. 计算机应用, 2021, 41(9): 2687-2693. |
[8] | 何正海, 线岩团, 王蒙, 余正涛. 融合句法指导与字符注意力机制的案情阅读理解方法[J]. 计算机应用, 2021, 41(8): 2427-2431. |
[9] | 樊玮, 李晨炫, 邢艳, 黄睿, 彭洪健. 航空发动机损伤图像的二分类到多分类递进式检测网络[J]. 计算机应用, 2021, 41(8): 2352-2357. |
[10] | 曹玉红, 徐海, 刘荪傲, 王紫霄, 李宏亮. 基于深度学习的医学影像分割研究综述[J]. 计算机应用, 2021, 41(8): 2273-2287. |
[11] | 秦斌斌, 彭良康, 卢向明, 钱江波. 司机分心驾驶检测研究进展[J]. 计算机应用, 2021, 41(8): 2330-2337. |
[12] | 侯笑晗, 金国栋, 谭力宁, 薛远亮. 基于自适应和最优特征的合成孔径雷达舰船检测方法[J]. 计算机应用, 2021, 41(7): 2150-2155. |
[13] | 李亚芳, 梁烨, 冯韦玮, 祖宝开, 康玉健. 基于社区优化的深度网络嵌入方法[J]. 计算机应用, 2021, 41(7): 1956-1963. |
[14] | 高钦泉, 黄炳城, 刘文哲, 童同. 基于改进CenterNet的竹条表面缺陷检测方法[J]. 计算机应用, 2021, 41(7): 1933-1938. |
[15] | 冯兴杰, 张天泽. 基于分组卷积进行特征融合的全景分割算法[J]. 计算机应用, 2021, 41(7): 2054-2061. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||