《计算机应用》唯一官方网站 ›› 2021, Vol. 41 ›› Issue (12): 3590-3595.DOI: 10.11772/j.issn.1001-9081.2021061011
所属专题: 第十八届中国机器学习会议(CCML 2021)
• 第十八届中国机器学习会议(CCML 2021) • 上一篇 下一篇
收稿日期:
2021-05-12
修回日期:
2021-07-06
接受日期:
2021-07-07
发布日期:
2021-12-28
出版日期:
2021-12-10
通讯作者:
曾智勇
作者简介:
龚云鹏(1994—),男,福建泉州人,硕士研究生,主要研究方向:计算机视觉、行人重识别
Yunpeng GONG, Zhiyong ZENG(), Feng YE
Received:
2021-05-12
Revised:
2021-07-06
Accepted:
2021-07-07
Online:
2021-12-28
Published:
2021-12-10
Contact:
Zhiyong ZENG
About author:
GONG Yunpeng, born in 1994, M. S. candidate. His research interests include computer vison, person re-identification.摘要:
在显著的类内变化中所学特征是否具有较好的不变性会决定行人重识别(ReID)模型的性能表现的上限,环境光线、图像分辨率变化、运动模糊等因素都会引起行人图像的颜色偏差,这些问题将导致模型对数据的颜色信息过度拟合从而限制模型的性能表现。而模拟数据样本的颜色信息丢失并凸显样本的结构信息可以促进模型学习到更稳健的特征。具体来说,在模型训练时,按照所设定的概率随机选择训练数据批组,然后对所选中批组中的每一个RGB图像样本随机选取图像的一个矩形区域或者直接选取整张图像,并将所选区域的像素替换为相应灰度图像中相同的矩形区域的像素,从而生成包含不同灰度区域的训练图像。实验结果表明,所提方法与基准模型相比在平均精度均值(mAP)评价指标上最高提升了3.3个百分点,并在多个数据集上表现良好。
中图分类号:
龚云鹏, 曾智勇, 叶锋. 基于灰度域特征增强的行人重识别方法[J]. 计算机应用, 2021, 41(12): 3590-3595.
Yunpeng GONG, Zhiyong ZENG, Feng YE. Person re-identification method based on grayscale feature enhancement[J]. Journal of Computer Applications, 2021, 41(12): 3590-3595.
数据集 | 各指标上的灰度贡献率 | |||
---|---|---|---|---|
Rank-1 | Rank-5 | Rank-10 | mAP | |
Market-1501[ | 89.3 | 95.4 | 97.5 | 73.4 |
DukeMTMC[ | 91.5 | 94.1 | 95.6 | 77.7 |
MSMT17[ | 87.2 | 91.7 | 99.2 | 70.6 |
表1 不同数据集上在各评价指标上的灰度贡献率 ( %)
Tab. 1 Grayscale contribution rate on each evaluation index on different datasets
数据集 | 各指标上的灰度贡献率 | |||
---|---|---|---|---|
Rank-1 | Rank-5 | Rank-10 | mAP | |
Market-1501[ | 89.3 | 95.4 | 97.5 | 73.4 |
DukeMTMC[ | 91.5 | 94.1 | 95.6 | 77.7 |
MSMT17[ | 87.2 | 91.7 | 99.2 | 70.6 |
方法 | Rank-1 | mAP |
---|---|---|
IANet(CVPR19) | 94.4 | 83.1 |
DGNet(CVPR19) | 94.8 | 86.0 |
SCAL (ICCV19) | 95.8 | 89.3 |
Circle Loss (CVPR20) | 96.1 | 87.4 |
SB (CVPR19) | 94.5 | 85.9 |
SB + reRank | 95.4 | 94.2 |
SB + GGT | 94.6(+0.1) | 85.7 |
SB + GGT+ reRank | 96.2(+0.8) | 94.7(+0.5) |
SB + LGT | 95.1(+0.6) | 87.2(+1.3) |
SB + LGT + reRank | 95.9(+0.5) | 94.4(+0.2) |
FR | 96. 3 | 90.3 |
FR+ reRank | 96.8 | 95.3 |
FR + GGT | 96.5(+0.2) | 91.2(+0.9) |
FR + GGT + reRank | 96.9(+0.1) | 95.6(+0.3) |
表2 Market-1501数据集上不同方法的性能比较 ( %)
Tab.2 Performance comparison of different methods on Market-1501 dataset
方法 | Rank-1 | mAP |
---|---|---|
IANet(CVPR19) | 94.4 | 83.1 |
DGNet(CVPR19) | 94.8 | 86.0 |
SCAL (ICCV19) | 95.8 | 89.3 |
Circle Loss (CVPR20) | 96.1 | 87.4 |
SB (CVPR19) | 94.5 | 85.9 |
SB + reRank | 95.4 | 94.2 |
SB + GGT | 94.6(+0.1) | 85.7 |
SB + GGT+ reRank | 96.2(+0.8) | 94.7(+0.5) |
SB + LGT | 95.1(+0.6) | 87.2(+1.3) |
SB + LGT + reRank | 95.9(+0.5) | 94.4(+0.2) |
FR | 96. 3 | 90.3 |
FR+ reRank | 96.8 | 95.3 |
FR + GGT | 96.5(+0.2) | 91.2(+0.9) |
FR + GGT + reRank | 96.9(+0.1) | 95.6(+0.3) |
方法 | Rank-1 | mAP |
---|---|---|
IANet(CVPR19) | 87.1 | 73.4 |
DGNet(CVPR19) | 86.6 | 74.8 |
SCAL (ICCV19) | 89.0 | 79.6 |
SB (CVPR19) | 86.4 | 76.4 |
SB + reRank | 90.3 | 89.1 |
SB + GGT | 87.8(+1.4) | 77.3(+0.9) |
SB + GGT+ reRank | 90.9(+0.6) | 89.2(+0.1) |
SB + LGT | 87.3(+0.9) | 77.3(+0.9) |
SB + LGT + reRank | 91.0(+0.7) | 89.4(+0.3) |
FR | 92.4 | 83.2 |
FR + reRank | 94.4 | 92.2 |
FR + LGT | 92.8(+0.4) | 84.2(+1) |
FR + LGT + reRank | 94.3 | 92.7(+0.5) |
表3 DukeMTMC数据集上不同方法的性能比较 ( %)
Tab.3 Performance comparison of different methods on DukeMTMC dataset
方法 | Rank-1 | mAP |
---|---|---|
IANet(CVPR19) | 87.1 | 73.4 |
DGNet(CVPR19) | 86.6 | 74.8 |
SCAL (ICCV19) | 89.0 | 79.6 |
SB (CVPR19) | 86.4 | 76.4 |
SB + reRank | 90.3 | 89.1 |
SB + GGT | 87.8(+1.4) | 77.3(+0.9) |
SB + GGT+ reRank | 90.9(+0.6) | 89.2(+0.1) |
SB + LGT | 87.3(+0.9) | 77.3(+0.9) |
SB + LGT + reRank | 91.0(+0.7) | 89.4(+0.3) |
FR | 92.4 | 83.2 |
FR + reRank | 94.4 | 92.2 |
FR + LGT | 92.8(+0.4) | 84.2(+1) |
FR + LGT + reRank | 94.3 | 92.7(+0.5) |
方法 | Rank-1 | mAP |
---|---|---|
IANet (CVPR19) | 75.5 | 46.8 |
DGNet(CVPR19) | 77.2 | 52.3 |
RGA-SC(CVPR20) | 80.3 | 57.5 |
AdaptiveReID | 81.7 | 62.2 |
FR | 85.1 | 63.3 |
FR + GGT(ours) | 86.2(+1.1) | 65.3(+2) |
FR + GGT&LGT(ours) | 86.2(+1.1) | 65.9(+2.6) |
表4 MSMT17数据集上不同方法的性能比较 ( %)
Tab.4 Performance comparison of different methods on MSMT17 dataset
方法 | Rank-1 | mAP |
---|---|---|
IANet (CVPR19) | 75.5 | 46.8 |
DGNet(CVPR19) | 77.2 | 52.3 |
RGA-SC(CVPR20) | 80.3 | 57.5 |
AdaptiveReID | 81.7 | 62.2 |
FR | 85.1 | 63.3 |
FR + GGT(ours) | 86.2(+1.1) | 65.3(+2) |
FR + GGT&LGT(ours) | 86.2(+1.1) | 65.9(+2.6) |
方法 | 跨域方向 | |||
---|---|---|---|---|
M→D | D→M | |||
Rank-1 | mAP | Rank-1 | mAP | |
SB+REA+reRank | 33.6 | 24.3 | 51.6 | 32.3 |
SB+REA+GGT+reRank | 37.8 | 27.8 | 55.4 | 35.7 |
SB-REA+reRank | 45.5 | 37.0 | 58.2 | 37.8 |
SB-REA+GGT+reRank | 48.2 | 37.9 | 65.0 | 43.7 |
表5 全局灰度转换与随机擦除的跨域性能比较 ( %)
Tab.5 Cross-domain performance comparison of global grayscale transformation with random erasing
方法 | 跨域方向 | |||
---|---|---|---|---|
M→D | D→M | |||
Rank-1 | mAP | Rank-1 | mAP | |
SB+REA+reRank | 33.6 | 24.3 | 51.6 | 32.3 |
SB+REA+GGT+reRank | 37.8 | 27.8 | 55.4 | 35.7 |
SB-REA+reRank | 45.5 | 37.0 | 58.2 | 37.8 |
SB-REA+GGT+reRank | 48.2 | 37.9 | 65.0 | 43.7 |
1 | LENG Q M, YE M, TIAN Q. A survey of open-world person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(4):1092-1108. 10.1109/tcsvt.2019.2898940 |
2 | ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015:1116-1124. 10.1109/iccv.2015.133 |
3 | ZHENG Z D, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3774-3782. 10.1109/iccv.2017.405 |
4 | WEI L H, ZHANG S L, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 79-88. 10.1109/cvpr.2018.00016 |
5 | ZHENG Z D, YANG X D, YU Z D, et al. Joint discriminative and generative learning for person re-identification[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2133-2142. 10.1109/cvpr.2019.00224 |
6 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2672-2680. |
7 | ZHONG Z, ZHENG L, ZHENG Z D, et al. Camera style adaptation for person re-identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5157-5166. 10.1109/cvpr.2018.00541 |
8 | QIAN X L, FU Y W, XIANG T, et al. Pose-normalized image generation for person re-identification[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11213. Cham: Springer, 2018: 661-678. |
9 | ZHONG Z, ZHENG L, KANG G L, et al. Random erasing data augmentation[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 13001-13008. 10.1609/aaai.v34i07.7000 |
10 | FAN X, JIANG W, LUO H, et al. SphereReID: deep hypersphere manifold embedding for person re-identification[J]. Journal of Visual Communication and Image Representation, 2019, 60(4): 51-58. 10.1016/j.jvcir.2019.01.010 |
11 | ZHONG Z, ZHENG L, CAO D L, et al. Re-ranking person re-identification with k-reciprocal encoding[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3652-3661. 10.1109/cvpr.2017.389 |
12 | SUN Y F, CHENG C M, ZHANG Y H, et al. Circle Loss: a unified perspective of pair similarity optimization[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6397-6406. 10.1109/cvpr42600.2020.00643 |
13 | HOU R B, MA B P, CHANG H, et al. Interaction-and-aggregation network for person re-identification[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9309-9318. 10.1109/cvpr.2019.00954 |
14 | NI X Y, FANG L, HUTTUNEN H. Adaptive L2 regularization in person re-identification[EB/OL]. (2020-10-18) [2021-04-22].. 10.1109/icpr48806.2021.9412481 |
15 | ZHOU K Y, YANG Y X, CAVALLARO A, et al. Omni-scale feature learning for person re-identification[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3701-3711. 10.1109/iccv.2019.00380 |
16 | LUO H, JIANG W, ZHANG X, et al. AlignedReID++: dynamically matching local information for person re-identification[J]. Pattern Recognition, 2019, 94: 53-61. 10.1016/j.patcog.2019.05.028 |
17 | DeVRIES T, TAYLOR G W. Improved regularization of convolutional neural networks with cutout[EB/OL]. (2017-11-29) [2021-04-22].. |
18 | CHEN B H, DENG W H, HU J N. Mixed high-order attention network for person re-identification[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 371-381. 10.1109/iccv.2019.00046 |
19 | ZHANG Z Z, LAN C L, ZENG W J, et al. Relation-aware global attention for person re-identification[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3183-3192. 10.1109/cvpr42600.2020.00325 |
20 | ZHENG Z D. PyTorch ReID: a tiny, friendly, strong PyTorch implement of person re-identification baseline[CP/OL]. [2021-04-22].. 10.1109/iccv.2017.405 |
21 | LUO H, GU Y Z, LIAO X Y, et al. Bag of tricks and a strong baseline for deep person re-identification[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1487-1495. 10.1109/cvprw.2019.00190 |
22 | HE L X, LIAO X Y, LIU W, et al. FastReID: a PyTorch toolbox for general instance re-identification[EB/OL]. (2020-07-15) [2021-04-22].. |
23 | HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS9908. Cham: Springer, 2016: 630-645. |
24 | PAN X G, LUO P, SHI J P, et al. Two at once: enhancing learning and generalization capacities via IBN-Net[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11208. Cham: Springer, 2018: 484-500. |
[1] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[2] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[3] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
[4] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[5] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. |
[6] | 贾洁茹, 杨建超, 张硕蕊, 闫涛, 陈斌. 基于自蒸馏视觉Transformer的无监督行人重识别[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2893-2902. |
[7] | 付帅, 郭小英, 白茹意, 闫涛, 陈斌. 改进的CloFormer模型与有序回归相结合的年龄评估方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2372-2380. |
[8] | 王翠, 邓淼磊, 张德贤, 李磊, 杨晓艳. 基于图像的端到端行人搜索算法综述[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2544-2550. |
[9] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
[10] | 顾焰杰, 张英俊, 刘晓倩, 周围, 孙威. 基于时空多图融合的交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2618-2625. |
[11] | 石乾宏, 杨燕, 江永全, 欧阳小草, 范武波, 陈强, 姜涛, 李媛. 面向空气质量预测的多粒度突变拟合网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2643-2650. |
[12] | 杨莹, 郝晓燕, 于丹, 马垚, 陈永乐. 面向图神经网络模型提取攻击的图数据生成方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2483-2492. |
[13] | 施赛龙, 方智文. 基于多尺度聚合和共享注意力的注视估计模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2047-2054. |
[14] | 吴筝, 程志友, 汪真天, 汪传建, 王胜, 许辉. 基于深度学习的患者麻醉复苏过程中的头部运动幅度分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2258-2263. |
[15] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||