1 |
刘华真,王巍,谷壬倩,等.基于用户浏览行为的个性化推荐研究综述[J].计算机应用研究, 2021, 38(8): 2268-2277. 10.19734/j.issn.1001-3695.2020.10.0347
|
|
LIU H Z, WANG W, GU R Q, et al. Survey of personalized recommendation study based on user browsing behavior[J]. Application Research of Computers, 2021, 38(8): 2268-2277. 10.19734/j.issn.1001-3695.2020.10.0347
|
2 |
冯兴杰,曾云泽.基于用户评论的动态方面注意力电商推荐深度学习模型[J].计算机应用与软件, 2020, 37(3): 38-44, 71. 10.3969/j.issn.1000-386x.2020.03.007
|
|
FENG X J, ZENG Y Z. A deep learning model of dynamic aspect attention e-commerce recommendation based on user comments[J]. Computer Applications and Software, 2020, 37(3): 38-44, 71. 10.3969/j.issn.1000-386x.2020.03.007
|
3 |
CHEN T, YIN H Z, CHEN H X, et al. AIR: Attentional Intention-aware Recommender systems [C]// Proceedings of the IEEE 35th International Conference on Data Engineering. Piscataway: IEEE, 2019: 304-315. 10.1109/icde.2019.00035
|
4 |
EBESU T, SHEN B, FANG Y. Collaborative memory network for recommendation systems [C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2018: 515-524. 10.1145/3209978.3209991
|
5 |
LUO X S, YANG Y H, ZHU K Q, et al. Conceptualize and infer user needs in e-commerce [C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 2517-2525. 10.1145/3357384.3357812
|
6 |
JI H Y, ZHU J X, SHI C, et al. Large-scale comb-K recommendation [C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 2512-2523. 10.1145/3442381.3449924
|
7 |
SHAO H J, WANG J, LIN H H, et al. Controllable and diverse text generation in e-commerce [C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 2392-2401. 10.1145/3442381.3449838
|
8 |
张玉洁,董政,孟祥武.个性化广告推荐系统及其应用研究[J].计算机学报, 2021, 44(3): 531-563. 10.11897/SP.J.1016.2021.00531
|
|
ZHANG Y J, DONG Z, MENG X W . et al. Research on personalized advertising recommendation systems and their applications[J]. Chinese Journal of Computers, 2021, 44(3): 531-563. 10.11897/SP.J.1016.2021.00531
|
9 |
BONNER S, VASILE F. Causal embeddings for recommendation [C]// Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM, 2018: 104-112. 10.1145/3240323.3240360
|
10 |
DASH A, CHAKRABORTY A, GHOSH S, et al. When the umpire is also a player: bias in private label product recommendations on e-commerce marketplaces [C]// Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. New York: ACM, 2021: 873-884. 10.1145/3442188.3445944
|
11 |
WU Z T, SONG C Y, CHEN Y Q, et al. A review of recommendation system research based on bipartite graph[J]. MATEC Web of Conferences, 2021, 336: No.05010. 10.1051/matecconf/202133605010
|
12 |
WANG X, HUANG T L, WANG D X, et al. Learning intents behind interactions with knowledge graph for recommendation [C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 878-887. 10.1145/3442381.3450133
|
13 |
WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 950-958. 10.1145/3292500.3330989
|
14 |
PEROZZI B, AI-RFOU R, SKIENA S. DeepWalk: online learning of social representations [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. 10.1145/2623330.2623732
|
15 |
HAN J Y, ZHENG L, XU Y B, et al. Adaptive deep modeling of users and items using side information for recommendation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(3): 737-748. 10.1109/tnnls.2019.2909432
|
16 |
SUN R, CAO X Z, ZHAO Y, et al. Multi-modal knowledge graphs for recommender systems [C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1405-1414. 10.1145/3340531.3411947
|
17 |
QIU J Z, DONG Y X, MA H, et al. Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec [C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 459-467. 10.1145/3159652.3159706
|
18 |
ZHANG J, DONG Y X, WANG Y, et al. ProNE: fast and scalable network representation learning [C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 4278-4284. 10.24963/ijcai.2019/594
|
19 |
McAULEY J, TARGETT C, SHI Q F, et al. Image-based recommendations on styles and substitutes [C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 43-52. 10.1145/2766462.2767755
|
20 |
STECK H. Calibrated recommendations [C]// Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM, 2018: 154-162. 10.1145/3240323.3240372
|
21 |
倪晗昱.基于用户兴趣漂移和语义特征的新闻推荐系统设计与实现[D].北京:北京邮电大学, 2020: 25-85.
|
|
NI H Y. Design and implementation of news recommendation system based on user interest drift and semantic features[J]. Beijing: Beijing University of Posts and Telecommunications, 2020: 25-85.
|
22 |
ABDOLLAHPOURI H, BURKE R, MOBASHER B. Managing popularity bias in recommender systems with personalized re-ranking [C]// Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference. Palo Alto, CA: AAAI Press, 2019: 413-418. 10.1145/3383313.3418487
|