| 1 | POLIKAR R. Ensemble learning[M]// ZHANG C, MA Y Q. Ensemble Machine Learning: Methods and Applications. Boston: Springer, 2012:1-34.  10.1007/978-1-4419-9326-7_1 | 
																													
																						| 2 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359.  10.1109/tkde.2009.191 | 
																													
																						| 3 | RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf: an astounding baseline for recognition[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2014:512-519.  10.1109/cvprw.2014.131 | 
																													
																						| 4 | CUI Y, SONG Y, SUN C, et al. Large scale fine-grained categorization and domain-specific transfer learning[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:4109-4118.  10.1109/cvpr.2018.00432 | 
																													
																						| 5 | ROMERO A, BALLAS N, KAHOU S E, et al. FitNets: hints for thin deep nets[EB/OL]. (2015-03-27). [2021-08-21].. | 
																													
																						| 6 | ZAGORUYKO S, KOMODAKIS N. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer[EB/OL]. (2017-02-12). [2021-08-21]..  10.1109/icip42928.2021.9506101 | 
																													
																						| 7 | SRINIVAS S, FLEURET F. Knowledge transfer with Jacobian matching[C]// Proceedings of the 35th International Conference on Machine Learning. New York: PMLR.org, 2018:4723-4731. | 
																													
																						| 8 | JANG Y, LEE H, HWANG S J, et al. Learning what and where to transfer[C]// Proceedings of the 36th International Conference on Machine Learning. New York: PMLR.org, 2019:3030-3039. | 
																													
																						| 9 | JIA D, WEI D, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009:248-255.  10.1109/cvpr.2009.5206848 | 
																													
																						| 10 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-08-21].. | 
																													
																						| 11 | RIBEIRO M T, SINGH S, GUESTRIN C. "Why should I trust you?": explaining the predictions of any classifier[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016:1135-1144.  10.1145/2939672.2939778 | 
																													
																						| 12 | YOU S, XU C, XU C, et al. Learning from multiple teacher networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017:1285-1294.  10.1145/3097983.3098135 | 
																													
																						| 13 | FURLANELLO T, LIPTON Z C, TSCHANNEN M, et al. Born-again neural networks[C]// Proceedings of the 35th International Conference on Machine Learning. New York: PMLR.org, 2018:1607-1616. | 
																													
																						| 14 | DVORNIK N, MAIRAL J, SCHMID C. Diversity with cooperation: ensemble methods for few-shot classification[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019:3722-3730 .  10.1109/iccv.2019.00382 | 
																													
																						| 15 | ZHANG Q S, CAO R M, SHI F, et al. Interpreting CNN knowledge via an explanatory graph[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018:4454-4463.  10.1609/aaai.v32i1.11819 | 
																													
																						| 16 | BAGHERINEZHAD H, HORTON M, RASTEGARI M, et al. Label refinery: improving ImageNet classification through label progression[EB/OL]. (2018-05-07). [2021-08-21].. | 
																													
																						| 17 | UZKENT B, YEH C, ERMON S. Efficient object detection in large images using deep reinforcement learning[C]// Proceedings of the 2020 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020:1824-1822.  10.1109/wacv45572.2020.9093447 | 
																													
																						| 18 | FROSST N, HINTON G. Distilling a neural network into a soft decision tree[EB/OL]. (2017-11-27). [2021-08-21].. | 
																													
																						| 19 | 刘乐姗. 卷积神经网络模型压缩的算法优化研究[D]. 石家庄:河北经贸大学, 2020:8-36. | 
																													
																						|  | LIU L S. The research on algorithm optimization of convolutional neural network model compression[D]. Shijiazhuang: Hebei University of Economics and Business, 2020:8-36. | 
																													
																						| 20 | FLENNERHAG S, MORENO P G, LAWRENCE N D, et al. Transferring knowledge across learning processes[EB/OL]. (2019-03-22). [2021-08-21].. | 
																													
																						| 21 | MURDOCH W J, LIU P J, YU B. Beyond word importance: contextual decomposition to extract interactions from LSTMs[EB/OL]. (2019-04-27). [2021-08-21].. | 
																													
																						| 22 | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-03-09). [2021-08-21].. | 
																													
																						| 23 | HEO B, LEE M, YUN S, et al. Knowledge distillation with adversarial samples supporting decision boundary[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019:3771-3778.  10.1609/aaai.v33i01.33013771 | 
																													
																						| 24 | SHEN C C, WANG X C, SONG J, et al. Amalgamating knowledge towards comprehensive classification[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019:3068-3075.  10.1609/aaai.v33i01.33013068 | 
																													
																						| 25 | BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2):123-140.  10.1007/bf00058655 | 
																													
																						| 26 | SHEN C C, XUE M Q, WANG X C, et al. Customizing student networks from heterogeneous teachers via adaptive knowledge amalgamation[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019:3503-3512.  10.1109/iccv.2019.00360 | 
																													
																						| 27 | YE J W, WANG X C, JI Y X, et al. Amalgamating filtered knowledge: learning task-customized student from multi-task teachers[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 4128-4134.  10.24963/ijcai.2019/573 | 
																													
																						| 28 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:770-778.  10.1109/cvpr.2016.90 |