1 |
WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426. 10.1145/3269206.3271739
|
2 |
孔元元,白智远,张飒,等.融合时间与兴趣相似度的产品推荐方法研究[J].计算机技术与发展,2019,29(9):195-199. 10.3969/j.issn.1673-629X.2019.09.037
|
|
KONG Y Y, BAI Z Y, ZHANG S, et al. Research on products recommendation method integrated with time weight and interest similarity[J]. Computer Technology and Development, 2019, 29(9): 195-199. 10.3969/j.issn.1673-629X.2019.09.037
|
3 |
WANG H W, ZHANG F Z, XIE X, et al. DKN: deep knowledge-aware network for news recommendation [C]// Proceedings of the 2018 World Wide Web Conference. New York: ACM, 2018: 1835-1844. 10.1145/3178876.3186175
|
4 |
贾雯,李香.融合用户相似度的协同过滤算法研究[J].信息与电脑(理论版),2020,32(14):74-76.
|
|
JIA W, LI X. Research on collaborative filtering algorithm based on user similarity[J]. China Computer & Communication(Theoretical Edition), 2020, 32(14): 74-76.
|
5 |
RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback [C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. New York: ACM, 2009: 452-461.
|
6 |
WANG H W, ZHANG F Z, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommendation [C]// Proceedings of the 28th World Wide Web Conference. New York: ACM, 2019: 2000-2010. 10.1145/3308558.3313411
|
7 |
DONG L, WEI F R, ZHOU M, et al. Question answering over freebase with multi-column convolutional neural networks [C]// Proceedings of the 53rd Annual Meeting of Association for Computer Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2015: 260-269. 10.3115/v1/p15-1026
|
8 |
ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362. 10.1145/2939672.2939673
|
9 |
HU B B, SHI C, ZHAO W X, et al. Leveraging meta-path based context for top-n recommendation with a neural co-attention model [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1531-1540. 10.1145/3219819.3219965
|
10 |
WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems [C]// Proceedings of the 28th World Wide Web Conference. New York: ACM, 2019: 3307-3313. 10.1145/3308558.3313417
|
11 |
WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 950-958. 10.1145/3292500.3330989
|
12 |
李昌华,刘艺,李智杰.用于非精确图匹配的改进注意图卷积网络[J].小型微型计算机系统,2021,42(1):41-45. 10.3969/j.issn.1000-1220.2021.01.008
|
|
LI C H, LIU Y, LI Z J. Improved attention graph convolutional network model for inexact graph matching[J]. Journal of Chinese Computer Systems,2021, 42(1): 41-45. 10.3969/j.issn.1000-1220.2021.01.008
|
13 |
RONG Y, HUANG W B, XU T Y, et al. DropEdge: towards deep graph convolutional networks on node classification [EB/OL]// [2020-03-12]. . 10.1007/978-3-030-75765-6_6
|
14 |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2013: 2787-2795. 10.1007/978-3-662-44848-9_28
|
15 |
JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix [C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2015: 687-696. 10.3115/v1/p15-1067
|
16 |
YU X, REN X, SUN Y Z, et al. Personalized entity recommendation: a heterogeneous information network approach [C]// Proceedings of 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014: 283-292. 10.1145/2556195.2556259
|
17 |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs [C]// Proceedings of the 31st Annual Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1025-1035. 10.1145/3219819.3219890
|
18 |
WANG Z, LIN G Y, TAN H B, et al. CKAN: collaborative knowledge-aware attentive network for recommender systems [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 219-228. 10.1145/3397271.3401141
|
19 |
CHIANG W L, LIU X Q, SI S, et al. ClusterGCN: an efficient algorithm for training deep and large graph convolutional networks [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 257-266. 10.1145/3292500.3330925
|
20 |
高亚男,刘勇,惠丽.基于循环采样聚合邻居信息的动态网络表征方法[J].黑龙江大学工程学报,2021,12(1):62-67.
|
|
GAO Y N, LIU Y, HUI L. Dynamic network representation method based on recurrent sampling to gather neighbor nodes[J]. Journal of Engineering of Heilongjiang University, 2021, 12(1): 62-67.
|
21 |
宋继红,王桐桐.基于特征融合卷积神经网络的加密流量分类方法[J].信息与电脑(理论版),2021,33(2):49-51. 10.1109/cac53003.2021.9728127
|
|
SONG J H, WANG T T. Encrypted traffic classification method based on feature fusion convolutional neural network[J]. China Computer & Communication (Theoretical Edition), 2021, 33(2): 49-51. 10.1109/cac53003.2021.9728127
|