《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (4): 1087-1092.DOI: 10.11772/j.issn.1001-9081.2021071269
所属专题: CCF第36届中国计算机应用大会 (CCF NCCA 2021)
• CCF第36届中国计算机应用大会 (CCF NCCA 2021) • 上一篇 下一篇
Junhua GU1,2, Rui WANG1, Ningning LI1, Suqi ZHANG3()
摘要:
知识图谱(KG)能够缓解协同过滤算法存在的数据稀疏和冷启动问题,在推荐领域被广泛地研究和应用。现有的很多基于KG的推荐模型混淆了用户物品二部图中的协同过滤信息和KG中实体间的关联信息,导致学习到的用户向量和物品向量无法准确表达其特征,甚至引入与用户、物品无关的信息从而干扰推荐。针对上述问题提出一种融合协同信息的知识图注意力网络(KGANCF)。首先,为了避免KG实体信息的干扰,网络的协同过滤层从用户物品二部图中挖掘出用户和物品的协同过滤信息;然后,在知识图注意力嵌入层中应用图注意力机制,从KG中继续提取与用户和物品密切相关的属性信息;最后,在预测层将用户物品的协同过滤信息和KG中的属性信息融合,得到用户和物品最终向量表示,进而预测用户对物品的评分。在MovieLens-20M和Last.FM数据集上进行了实验,与协同知识感知注意力网络(CKAN)相比,KGANCF在MovieLens-20M数据集上的F1分数提升了1.1个百分点,曲线下面积(AUC)提升了0.6个百分点;而在KG相对稀疏的Last.FM数据集上,模型的F1分数提升了3.3个百分点,AUC提升了8.5个百分点。实验结果表明,KGANCF能够有效提高推荐结果的准确度,在KG稀疏的数据集上显著优于协同知识嵌入(CKE)、知识图谱卷积网络(KGCN)、知识图注意网络(KGAT)和CKAN模型。
中图分类号: