《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (9): 2960-2968.DOI: 10.11772/j.issn.1001-9081.2021071343
收稿日期:
2021-07-27
修回日期:
2021-10-15
接受日期:
2021-10-21
发布日期:
2021-10-27
出版日期:
2022-09-10
通讯作者:
刘月峰
作者简介:
张小燕(1997—),女,内蒙古呼和浩特人,硕士研究生,主要研究方向:深度学习、航空发动机剩余寿命预测;基金资助:
Yuefeng LIU(), Xiaoyan ZHANG, Wei GUO, Haodong BIAN, Yingjie HE
Received:
2021-07-27
Revised:
2021-10-15
Accepted:
2021-10-21
Online:
2021-10-27
Published:
2022-09-10
Contact:
Yuefeng LIU
About author:
ZHANG Xiaoyan, born in 1997, M. S. candidate. Her research interests include deep learning, prediction of remaining useful life of aero-engine.Supported by:
摘要:
针对航空发动机剩余使用寿命(RUL)预测方法没有同时加权不同时间步下的数据,包括原始数据和所提取的特征,导致RUL预测准确性较低的问题,提出了一种基于优化混合模型的RUL预测方法。首先,选用三种不同的路径提取特征:1)将原始数据的均值和趋势系数输入至全连接网络;2)将原始数据输入双向长短期记忆(Bi-LSTM)网络,并采用注意力机制处理得到的特征;3)使用注意力机制处理原始数据,并将加权特征输入至卷积神经网络(CNN)和Bi-LSTM网络中。然后,采用融合多路径特征预测的思想,将上述提取到的特征融合后输入至全连接网络获得RUL预测结果。最后,使用商用模块化航空推进系统仿真(C-MAPSS)数据集验证方法的有效性。实验结果显示,所提方法在4个数据集上均有较好的表现。以FD001数据集为例,所提方法的均方根误差(RMSE)比Bi-LSTM网络降低了9.01%。
中图分类号:
刘月峰, 张小燕, 郭威, 边浩东, 何滢婕. 基于优化混合模型的航空发动机剩余寿命预测方法[J]. 计算机应用, 2022, 42(9): 2960-2968.
Yuefeng LIU, Xiaoyan ZHANG, Wei GUO, Haodong BIAN, Yingjie HE. Remaining useful life prediction method of aero-engine based on optimized hybrid model[J]. Journal of Computer Applications, 2022, 42(9): 2960-2968.
数据集 | 运行条件 种类 | 故障模式 种类 | 训练 发动机数 | 测试 发动机数 |
---|---|---|---|---|
FD001 | 1 | 1 | 100 | 100 |
FD002 | 6 | 1 | 260 | 259 |
FD003 | 1 | 2 | 100 | 100 |
FD004 | 6 | 2 | 249 | 248 |
表1 C-MAPSS数据集的描述
Tab. 1 Description of C-MAPSS datasets
数据集 | 运行条件 种类 | 故障模式 种类 | 训练 发动机数 | 测试 发动机数 |
---|---|---|---|---|
FD001 | 1 | 1 | 100 | 100 |
FD002 | 6 | 1 | 260 | 259 |
FD003 | 1 | 2 | 100 | 100 |
FD004 | 6 | 2 | 249 | 248 |
数据集 | batch size | epoch | winsize | dropout rate | learning rate |
---|---|---|---|---|---|
FD001 | 512 | 20 | 30 | 0.2 | 0.001 |
FD002 | 128 | 30 | 50 | 0.2 | 0.001 |
FD003 | 512 | 20 | 60 | 0.2 | 0.001 |
FD004 | 64 | 20 | 50 | 0.2 | 0.001 |
表2 参数设置
Tab. 2 Parameter setting
数据集 | batch size | epoch | winsize | dropout rate | learning rate |
---|---|---|---|---|---|
FD001 | 512 | 20 | 30 | 0.2 | 0.001 |
FD002 | 128 | 30 | 50 | 0.2 | 0.001 |
FD003 | 512 | 20 | 60 | 0.2 | 0.001 |
FD004 | 64 | 20 | 50 | 0.2 | 0.001 |
操作 | 选择的传感器 |
---|---|
删除相关性为0% | 2,3,4,6,7,8,9,11,12,13,14,15,17,20,21 |
删除相关性小于30% | 2,3,4,6,7,8,9,11,12,13,15,17,20,21 |
删除相关性小于60% | 2,3,4,7,8,11,12,13,15,17,20,21 |
表3 传感器的选择结果
Tab. 3 Sensor selection results
操作 | 选择的传感器 |
---|---|
删除相关性为0% | 2,3,4,6,7,8,9,11,12,13,14,15,17,20,21 |
删除相关性小于30% | 2,3,4,6,7,8,9,11,12,13,15,17,20,21 |
删除相关性小于60% | 2,3,4,7,8,11,12,13,15,17,20,21 |
数据集 | 删除相关性为0%的传感器 | 删除相关性小于30%的传感器 | 删除相关性小于60%的传感器 | |||
---|---|---|---|---|---|---|
RMSE | Score | RMSE | Score | RMSE | Score | |
FD001 | 13.16 | 259.07 | 13.20 | 259.59 | 13.56 | 292.77 |
FD002 | 16.09 | 1 197.41 | 16.11 | 1 295.10 | 16.26 | 1 340.56 |
FD003 | 13.29 | 304.07 | 13.86 | 345.90 | 13.77 | 309.74 |
FD004 | 17.57 | 1 656.58 | 18.72 | 2 109.16 | 18.55 | 2 080.02 |
表4 删除相关性选择传感器后的RMSE和Score实验结果
Tab. 4 RMSE and Score experimental results with correlation selected sensors
数据集 | 删除相关性为0%的传感器 | 删除相关性小于30%的传感器 | 删除相关性小于60%的传感器 | |||
---|---|---|---|---|---|---|
RMSE | Score | RMSE | Score | RMSE | Score | |
FD001 | 13.16 | 259.07 | 13.20 | 259.59 | 13.56 | 292.77 |
FD002 | 16.09 | 1 197.41 | 16.11 | 1 295.10 | 16.26 | 1 340.56 |
FD003 | 13.29 | 304.07 | 13.86 | 345.90 | 13.77 | 309.74 |
FD004 | 17.57 | 1 656.58 | 18.72 | 2 109.16 | 18.55 | 2 080.02 |
数据集 | 单调性和相关性 | 单调性、可预测性和趋势性 | ||
---|---|---|---|---|
RMSE | Score | RMSE | Score | |
FD001 | 13.56 | 292.77 | 14.30 | 317.89 |
FD002 | 16.26 | 1 340.56 | 16.76 | 1 485.33 |
FD003 | 13.77 | 309.74 | 14.52 | 341.69 |
FD004 | 18.55 | 2 080.02 | 17.99 | 1 850.85 |
表5 两种线性组合的RMSE和Score实验结果
Tab. 5 RMSE and Score experimental results of two linear combinations
数据集 | 单调性和相关性 | 单调性、可预测性和趋势性 | ||
---|---|---|---|---|
RMSE | Score | RMSE | Score | |
FD001 | 13.56 | 292.77 | 14.30 | 317.89 |
FD002 | 16.26 | 1 340.56 | 16.76 | 1 485.33 |
FD003 | 13.77 | 309.74 | 14.52 | 341.69 |
FD004 | 18.55 | 2 080.02 | 17.99 | 1 850.85 |
数据集 | 特征提取+全连接网络(Path1) | Bi-LSTM+后置注意力(Path2) | 前置注意力+CNN+Bi-LSTM(Path3) | 本文方法 | ||||
---|---|---|---|---|---|---|---|---|
RMSE | Score | RMSE | Score | RMSE | Score | RMSE | Score | |
FD001 | 14.32 | 308.60 | 13.78 | 255.07 | 13.60 | 234.66 | 12.42 | 224.71 |
FD002 | 15.17 | 1 137.50 | 15.94 | 1 285.67 | 19.01 | 1 709.01 | 15.08 | 1093.10 |
FD003 | 14.78 | 316.05 | 14.36 | 438.68 | 13.84 | 344.51 | 12.64 | 227.24 |
FD004 | 16.45 | 1 610.34 | 16.96 | 1 651.97 | 21.56 | 2 518.23 | 16.10 | 1363.70 |
表6 消融实验的RMSE和Score结果
Tab. 6 RMSE and Score results of ablation experiments
数据集 | 特征提取+全连接网络(Path1) | Bi-LSTM+后置注意力(Path2) | 前置注意力+CNN+Bi-LSTM(Path3) | 本文方法 | ||||
---|---|---|---|---|---|---|---|---|
RMSE | Score | RMSE | Score | RMSE | Score | RMSE | Score | |
FD001 | 14.32 | 308.60 | 13.78 | 255.07 | 13.60 | 234.66 | 12.42 | 224.71 |
FD002 | 15.17 | 1 137.50 | 15.94 | 1 285.67 | 19.01 | 1 709.01 | 15.08 | 1093.10 |
FD003 | 14.78 | 316.05 | 14.36 | 438.68 | 13.84 | 344.51 | 12.64 | 227.24 |
FD004 | 16.45 | 1 610.34 | 16.96 | 1 651.97 | 21.56 | 2 518.23 | 16.10 | 1363.70 |
方法 | 数据集 | |||||||
---|---|---|---|---|---|---|---|---|
FD001 | FD002 | FD003 | FD004 | |||||
Score | RMSE | Score | RMSE | Score | RMSE | Score | RMSE | |
RF[ | 479.95 | 17.910 | 70 456.86 | 29.59 | 711.13 | 20.27 | 46 567.63 | 31.120 |
GB[ | 474.01 | 15.670 | 87 280.06 | 29.09 | 576.72 | 16.84 | 17 817.92 | 29.010 |
LSTM[ | 338.00 | 16.140 | 4 450.00 | 24.49 | 852.00 | 16.18 | 5 550.00 | 28.170 |
BiLSTM[ | 295.00 | 13.650 | 4 130.00 | 23.18 | 317.00 | 12.74 | 5 430.00 | 24.860 |
LSTMBS[ | 481.10 | 14.890 | 7 982.00 | 26.86 | 493.40 | 15.11 | 5 200.00 | 27.110 |
AGCNN[ | 225.51 | 12.420 | 1 492.00 | 19.43 | 227.09 | 13.39 | 3 392.00 | 21.500 |
RBM+LSTM[ | 231.00 | 12.560 | 3 366.00 | 22.73 | 251.00 | 12.10 | 2 840.00 | 22.660 |
HDNN[ | 245.00 | 13.017 | 1 282.42 | 15.24 | 287.72 | 12.22 | 1 527.42 | 18.156 |
本文方法 | 224.71 | 12.420 | 1093.11 | 15.08 | 227.24 | 12.64 | 1363.72 | 16.100 |
表7 不同方法之间的Score和RMSE比较
Tab. 7 Comparison of Score and RMSE of different methods
方法 | 数据集 | |||||||
---|---|---|---|---|---|---|---|---|
FD001 | FD002 | FD003 | FD004 | |||||
Score | RMSE | Score | RMSE | Score | RMSE | Score | RMSE | |
RF[ | 479.95 | 17.910 | 70 456.86 | 29.59 | 711.13 | 20.27 | 46 567.63 | 31.120 |
GB[ | 474.01 | 15.670 | 87 280.06 | 29.09 | 576.72 | 16.84 | 17 817.92 | 29.010 |
LSTM[ | 338.00 | 16.140 | 4 450.00 | 24.49 | 852.00 | 16.18 | 5 550.00 | 28.170 |
BiLSTM[ | 295.00 | 13.650 | 4 130.00 | 23.18 | 317.00 | 12.74 | 5 430.00 | 24.860 |
LSTMBS[ | 481.10 | 14.890 | 7 982.00 | 26.86 | 493.40 | 15.11 | 5 200.00 | 27.110 |
AGCNN[ | 225.51 | 12.420 | 1 492.00 | 19.43 | 227.09 | 13.39 | 3 392.00 | 21.500 |
RBM+LSTM[ | 231.00 | 12.560 | 3 366.00 | 22.73 | 251.00 | 12.10 | 2 840.00 | 22.660 |
HDNN[ | 245.00 | 13.017 | 1 282.42 | 15.24 | 287.72 | 12.22 | 1 527.42 | 18.156 |
本文方法 | 224.71 | 12.420 | 1093.11 | 15.08 | 227.24 | 12.64 | 1363.72 | 16.100 |
1 | ZHAI Q Q, YE Z S. RUL prediction of deteriorating products using an adaptive wiener process model[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6): 2911-2921. 10.1109/TII.2017.2684821 |
2 | LOUTAS T H, ROULIAS D, GEORGOULAS G. Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic e-support vectors regression[J]. IEEE Transactions on Reliability, 2013, 62(4): 821-832. 10.1109/tr.2013.2285318 |
3 | LIAO L X, KÖTTIG F. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction[J]. IEEE Transactions on Reliability, 2014, 63(1): 191-207. 10.1109/tr.2014.2299152 |
4 | AL-DULAIMI A, ZABIHI S, ASIF A, et al. NBLSTM: noisy and hybrid convolutional neural network and BLSTM-based deep architecture for remaining useful life estimation[J]. Journal of Computing and Information Science in Engineering, 2020, 20(2): No.021012. 10.1115/1.4045491 |
5 | CAI H S, JIA X D, FENG J S, et al. A similarity based methodology for machine prognostics by using kernel two sample test[J]. ISA Transactions, 2020, 103: 112-121. 10.1016/j.isatra.2020.03.007 |
6 | DENG K Y, ZHANG X Y, CHENG Y J, et al. A remaining useful life prediction method with long-short term feature processing for aircraft engines[J]. Applied Soft Computing, 2020, 93: No.106344. 10.1016/j.asoc.2020.106344 |
7 | HOU G S, XU S, ZHOU N, et al. Remaining useful life estimation using deep convolutional generative adversarial networks based on an autoencoder scheme[J]. Computational Intelligence and Neuroscience, 2020, 2020: No.9601389. 10.1155/2020/9601389 |
8 | HUANG C G, HUANG H Z, PENG W W, et al. Improved trajectory similarity-based approach for turbofan engine prognostics[J]. Journal of Mechanical Science and Technology, 2019, 33(10): 4877-4890. 10.1007/s12206-019-0928-3 |
9 | HONG C W, LEE C, LEE K, et al. Remaining useful life prognosis for turbofan engine using explainable deep neural networks with dimensionality reduction[J]. Sensors, 2020, 20(22): No.6626. 10.3390/s20226626 |
10 | HONG C W, LEE K, KO M S, et al. Multivariate time series forecasting for remaining useful life of turbofan engine using deep-stacked neural network and correlation analysis[C]// Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing. Piscataway: IEEE, 2020: 63-70. 10.1109/bigcomp48618.2020.00-98 |
11 | BEKTAS O, JONES J A, SANKARARAMAN S, et al. A neural network filtering approach for similarity-based remaining useful life estimation[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(1/2/3/4): 87-103. 10.1007/s00170-018-2874-0 |
12 | WU J, HU K, CHENG Y W, et al. Ensemble recurrent neural network-based residual useful life prognostics of aircraft engines[J]. Structural Durability and Health Monitoring, 2019, 13(3): 317-329. 10.32604/sdhm.2019.05571 |
13 | WU J, HU K, CHENG Y W, et al. Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network[J]. ISA Transactions, 2020, 97: 241-250. 10.1016/j.isatra.2019.07.004 |
14 | OMPUSUNGGU A P, PAPY J M, VANDENPLAS S. Kalman-filtering-based prognostics for automatic transmission clutches[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): 419-430. |
15 | JAVED K, GOURIVEAU R, ZERHOUNI N. A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering[J]. IEEE Transactions on Cybernetics, 2015, 45(12): 2626-2639. 10.1109/tcyb.2014.2378056 |
16 | WU D Z, JENNINGS C, TERPENNY J, et al. A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests[J]. Journal of Manufacturing Science and Engineering, 2017, 139(7): No.071018. 10.1115/1.4036350 |
17 | WU Y T, YUAN M, DONG S P, et al. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks[J]. Neurocomputing, 2018, 275: 167-179. 10.1016/j.neucom.2017.05.063 |
18 | 李京峰,陈云翔,项华春,等. 基于LSTM-DBN的航空发动机剩余寿命预测[J]. 系统工程与电子技术, 2020, 42(7): 1637-1644. 10.3969/j.issn.1001-506X.2020.07.28 |
LI J F, CHEN Y X, XIANG H C, et al. Remaining useful life prediction for aircraft engine based on LSTM-DBN[J]. Systems Engineering and Electronics, 2020, 42(7): 1637-1644. 10.3969/j.issn.1001-506X.2020.07.28 | |
19 | LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering and System Safety, 2018, 172: 1-11. 10.1016/j.ress.2017.11.021 |
20 | LIU H, LIU Z Y, JIA W Q, et al. A novel deep learning-based encoder-decoder model for remaining useful life prediction[C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8. 10.1109/ijcnn.2019.8852129 |
21 | 朱霖,宁芊,雷印杰,等. 基于遗传算法选优的集成手段与时序卷积网络的涡扇发动机剩余寿命预测[J]. 计算机应用, 2020, 40(12): 3534-3540. 10.11772/j.issn.1001-9081.2020050661 |
ZHU L, NING Q, LEI Y J, et al. Remaining useful life prediction for turbofan engines by genetic algorithm-based selective ensembling and temporal convolutional network[J]. Journal of Computer Applications, 2020, 40(12): 3534-3540. 10.11772/j.issn.1001-9081.2020050661 | |
22 | LIU H, LIU Z Y, JIA W Q, et al. Remaining useful life prediction using a novel feature-attention-based end-to-end approach[J]. IEEE Transactions on Industrial Informatics, 2021, 17(2): 1197-1207. 10.1109/tii.2020.2983760 |
23 | JIANG Y L, LI C S, YANG Z X, et al. Remaining useful life estimation combining two-step maximal information coefficient and temporal convolutional network with attention mechanism[J]. IEEE Access, 2021, 9: 16323-16336. 10.1109/access.2021.3052305 |
24 | DAS A, HUSSAIN S, YANG F, et al. Deep recurrent architecture with attention for remaining useful life estimation[C]// Proceedings of the 2019 IEEE Region 10 Conference. Piscataway: IEEE, 2019: 2093-2098. 10.1109/tencon.2019.8929267 |
25 | CHEN Z H, WU M, ZHAO R, et al. Machine remaining useful life prediction via an attention-based deep learning approach[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2521-2531. 10.1109/tie.2020.2972443 |
26 | KHELIF R, CHEBEL-MORELLO B, MALINOWSKI S, et al. Direct remaining useful life estimation based on support vector regression[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2276-2285. 10.1109/tie.2016.2623260 |
27 | ZHANG C, LIM P, QIN A K, et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2306-2318. 10.1109/tnnls.2016.2582798 |
28 | ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]// Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management. Piscataway: IEEE, 2017: 88-95. 10.1109/icphm.2017.7998311 |
29 | WANG J J, WEN G L, YANG S P, et al. Remaining useful life estimation in prognostics using deep bidirectional LSTM neural network[C]// Proceedings of the 2018 Prognostics and System Health Management Conference. Piscataway: IEEE, 2018: 1037-1042. 10.1109/phm-chongqing.2018.00184 |
30 | LIAO Y, ZHANG L X, LIU C D. Uncertainty prediction of remaining useful life using long short-term memory network based on bootstrap method[C]// Proceedings of the 2018 IEEE International Conference on Prognostics and Health Management. Piscataway: IEEE, 2018: 1-8. 10.1109/icphm.2018.8448804 |
31 | ELLEFSEN A L, BJØRLYKHAUG E, ÆSØY V, et al. Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture[J]. Reliability Engineering and System Safety, 2019, 183: 240-251. 10.1016/j.ress.2018.11.027 |
32 | AL-DULAIMI A, ZABIHI S, ASIF A, et al. A multimodal and hybrid deep neural network model for remaining useful life estimation[J]. Computers in Industry, 2019, 108: 186-196. 10.1016/j.compind.2019.02.004 |
[1] | 李云, 王富铕, 井佩光, 王粟, 肖澳. 基于不确定度感知的帧关联短视频事件检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2903-2910. |
[2] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. |
[3] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[4] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[5] | 赵宇博, 张丽萍, 闫盛, 侯敏, 高茂. 基于改进分段卷积神经网络和知识蒸馏的学科知识实体间关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2421-2429. |
[6] | 陈虹, 齐兵, 金海波, 武聪, 张立昂. 融合1D-CNN与BiGRU的类不平衡流量异常检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2493-2499. |
[7] | 张春雪, 仇丽青, 孙承爱, 荆彩霞. 基于两阶段动态兴趣识别的购买行为预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2365-2371. |
[8] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. |
[9] | 汪雨晴, 朱广丽, 段文杰, 李书羽, 周若彤. 基于交互注意力机制的心理咨询文本情感分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2393-2399. |
[10] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. |
[11] | 李钟华, 白云起, 王雪津, 黄雷雷, 林初俊, 廖诗宇. 基于图像增强的低照度人脸检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2588-2594. |
[12] | 莫尚斌, 王文君, 董凌, 高盛祥, 余正涛. 基于多路信息聚合协同解码的单通道语音增强[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2611-2617. |
[13] | 熊武, 曹从军, 宋雪芳, 邵云龙, 王旭升. 基于多尺度混合域注意力机制的笔迹鉴别方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2225-2232. |
[14] | 王东炜, 刘柏辰, 韩志, 王艳美, 唐延东. 基于低秩分解和向量量化的深度网络压缩方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 1987-1994. |
[15] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||