| 1 | FLETCHER K K. A quality‑based web api selection for mashup development using affinity propagation[C]// Proceedings of the 2018 International Conference on Services Computing. Cham: Springer, 2018: 153-165.  10.1007/978-3-319-94376-3_10 | 
																													
																						| 2 | ALMARIMI N, OUNI A, BOUKTIF S, et al. Web service API recommendation for automated mashup creation using multi‑ objective evolutionary search[J]. Applied Soft Computing, 2019, 85: No.105830.  10.1016/j.asoc.2019.105830 | 
																													
																						| 3 | 张龙昌,张成文.混合QoS聚类的服务组合[J].北京邮电大学学报,2011,34(5):57-62.  10.3969/j.issn.1007-5321.2011.05.013 | 
																													
																						|  | ZHANG L C, ZHANG C W. Hybrid QoS‑clustering web service composition[J]. Journal of Beijing University of Posts and Telecommunications, 2011, 34(5): 57-62.  10.3969/j.issn.1007-5321.2011.05.013 | 
																													
																						| 4 | 朱志良,苑海涛,宋杰,等. Web服务聚类方法的研究和改进[J]. 小型微型计算机系统, 2012, 33(1):96-101.  10.3969/j.issn.1000-1220.2012.01.018 | 
																													
																						|  | ZHU Z L, YUAN H T, SONG J, et al. Study and improvement on web services clustering approach[J]. Journal of Chinese Computer Systems, 2012, 33(1): 96-101.  10.3969/j.issn.1000-1220.2012.01.018 | 
																													
																						| 5 | TRIPATHY A K, PATRA M R, KHAN M A, et al. Dynamic web service composition with QoS clustering[C]// Proceedings of the 2014 IEEE International Conference on Web Services. Piscataway: IEEE, 2014: 678-679.  10.1109/icws.2014.99 | 
																													
																						| 6 | WU L, ZHANG Y, DI Z Y. A service‑cluster based approach to service substitution of web service composition[C]// Proceedings of the IEEE 16th International Conference on Computer Supported Cooperative Work in Design. Piscataway: IEEE, 2012: 564-568.  10.1109/cscwd.2012.6221874 | 
																													
																						| 7 | ABDULLAH A, LI X N. An efficient I/O based clustering HTN in Web Service Composition[C]// Proceedings of the 2013 International Conference on Computing, Management and Telecommunications. Piscataway: IEEE, 2013: 252-257.  10.1109/commantel.2013.6482400 | 
																													
																						| 8 | CAI H H, CUI L Z. Cloud service composition based on multi‑ granularity clustering[J]. Journal of Algorithms and Computational Technology, 2014, 8(2): 143-161.  10.1260/1748-3018.8.2.143 | 
																													
																						| 9 | BIANCHINI D, DE ANTONELLIS V, MELCHIORI M. An ontology‑based method for classifying and searching e‑Services[C]// Proceedings of the Forum of First International Conference on Service Oriented Computing, LNCS 2910. Cham: Springer, 2003: 15-18. | 
																													
																						| 10 | WANG X Z, WANG Z J, XU X F. Semi‑empirical service composition: a clustering based approach[C]// Proceedings of the 2011 IEEE International Conference on Web Services. Piscataway: IEEE, 2011: 219-226.  10.1109/icws.2011.15 | 
																													
																						| 11 | QUAN L, WANG Z L, LIU X. A real‑time subtask‑assistance strategy for adaptive services composition[J]. IEICE Transactions on Information and Systems, 2018, E101.D(5): 1361-1369.  10.1587/transinf.2017edp7131 | 
																													
																						| 12 | GAO A Q, YANG D Q, TANG S W, et al. Web service composition using Markov decision processes[C]// Proceedings of the 2005 International Conference on Web‑Age Information Management, LNCS 3739. Berlin: Springer, 2005: 308-319. | 
																													
																						| 13 | ZHANG Y Z, CLAVERA I, TSAI B, et al. Asynchronous methods for model‑based reinforcement learning[C]// Proceedings of the 3rd Conference on Robot Learning. New York: JMLR.org, 2020: 1338-1347. | 
																													
																						| 14 | RUIZ‑MONTIEL M, MANDOW L, PÉREZ‑DE‑LA‑CRUZ J L. A temporal difference method for multi‑objective reinforcement learning[J]. Neurocomputing, 2017, 263: 15-25.  10.1016/j.neucom.2016.10.100 | 
																													
																						| 15 | IANSITI M, LEVIEN R. Strategy as ecology[J]. Harvard Business Review, 2004, 82(3): 68-78, 126. | 
																													
																						| 16 | QI Q, CAO J. Investigating the evolution of Web API cooperative communities in the mashup ecosystem[C]// Proceedings of the 2020 IEEE International Conference on Web Services. Piscataway: IEEE, 2020: 413-417.  10.1109/icws49710.2020.00060 | 
																													
																						| 17 | WATTS D J, STROGATZ S H. Collective dynamics of ‘small‑world’ networks[J]. Nature, 1998, 393(6684): 440-442.  10.1038/30918 | 
																													
																						| 18 | NEWMAN M, BARABÁSI A L, WATTS D J. The Structure and Dynamics of Networks[M]. Princeton, NJ: Princeton University Press, 2006: 304-308. | 
																													
																						| 19 | BARABÁSI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.  10.1126/science.286.5439.509 | 
																													
																						| 20 | VÁZQUEZ A, PASTOR‑SATORRAS R, VESPIGNANI A. Internet topology at the router and autonomous system level[EB/OL]. [2021-12-05]..  10.1103/physreve.65.066130 | 
																													
																						| 21 | NEWMAN M E J. Scientific collaboration networks. Ⅰ. Network construction and fundamental results[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2001, 64(1): No.016131.  10.1103/physreve.64.016131 | 
																													
																						| 22 | FOSTER D P, YOUNG H P. Regret testing: a simple payoff‑ based procedure for learning Nash equilibrium[D]. Baltimore, MD: University of Pennsylvania, 2003: 341-367.  10.1016/s0899-8256(03)00025-3 | 
																													
																						| 23 | HART S, MAS‑COLELL A. A reinforcement procedure leading to correlated equilibrium[M]// Economics Essays: A Festschrift for Werner Hildenbrand. Berlin: Springer, 2001: 181-200.  10.1007/978-3-662-04623-4_12 | 
																													
																						| 24 | ORTNER R. Regret bounds for reinforcement learning via Markov chain concentration[J]. Journal of Artificial Intelligence Research, 2020, 67: 115-128.  10.1613/jair.1.11316 |