《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (5): 1386-1392.DOI: 10.11772/j.issn.1001-9081.2023121798
所属专题: 进化计算专题(2024年第5期“进化计算专题”导读,全文即将上线)
• 进化计算专题 • 上一篇
收稿日期:
2023-12-27
接受日期:
2024-02-05
发布日期:
2024-04-26
出版日期:
2024-05-10
通讯作者:
张兴义
作者简介:
田野(1991—),男,安徽霍山人,副教授,博士,主要研究方向:进化计算基金资助:
Ye TIAN, Jinjin CHEN, Xingyi ZHANG()
Received:
2023-12-27
Accepted:
2024-02-05
Online:
2024-04-26
Published:
2024-05-10
Contact:
Xingyi ZHANG
About author:
TIAN Ye, born in 1991, Ph. D., associate professor. His research interests include evolutionary computation.Supported by:
摘要:
约束多目标进化算法(CMOEA)是一类专门为解决约束多目标优化问题而设计的元启发式算法。这类算法利用基于种群的黑盒随机搜索模式,可以在不同优化问题上达到目标与约束之间的有效平衡;然而它们未有效利用函数的梯度信息,在复杂问题上收敛过慢。但引入梯度信息不是一个简单的过程,同时计算所有目标和约束的梯度会消耗大量的计算资源,且目标和约束之间的矛盾会使梯度方向难以确定。为此,提出一种进化计算和梯度下降(GD)的联合优化算法——基于梯度辅助的多阶段约束多目标进化算法(CMOEA-MSG)。该算法包括两个阶段:在第一阶段,算法通过构建辅助问题并有选择性地计算目标或约束的梯度更新解,使种群快速收敛至可行区域;在第二阶段,算法采用约束优先原则求解原问题,保证种群的可行性和多样性。与现有同类算法在LIR-CMOP、MW和DAS-CMOP三个测试集上的对比结果表明,CMOEA-MSG可以更有效地解决约束多目标优化问题。
中图分类号:
田野, 陈津津, 张兴义. 面向约束多目标优化的进化计算与梯度下降联合优化算法[J]. 计算机应用, 2024, 44(5): 1386-1392.
Ye TIAN, Jinjin CHEN, Xingyi ZHANG. Hybrid optimizer combining evolutionary computation and gradient descent for constrained multi-objective optimization[J]. Journal of Computer Applications, 2024, 44(5): 1386-1392.
问题 | CCMO | C-TAEA | MOEAD-DAE | MSCMO | PPS | ToP | c-DPEA | CMOEA-MSG |
---|---|---|---|---|---|---|---|---|
+/-/= | 2/7/5 | 0/11/3 | 1/12/1 | 0/9/5 | 0/14/0 | 0/10/3 | 3/5/6 | |
MW1 | 1.622 0E-3 (3.22E-5) + | 2.006 9E-3 (6.86E-5) - | 1.185 5E-2 (3.90E-2) - | 3.635 3E-3 (8.16E-3) - | 3.161 1E-3 (2.50E-4) - | 1.306 0E-1 (0.00E+0) = | 1.616 1E-3 (1.05E-5) + | 1.631 0E-3 (9.77E-6) |
MW2 | 2.268 5E-2 (1.53E-2) - | 1.609 1E-2 (6.21E-3) - | 3.727 2E-2 (2.45E-2) - | 2.333 4E-2 (1.53E-2) - | 1.025 1E-1 (8.86E-2) - | 1.672 5E-1 (1.71E-1) - | 1.806 4E-2 (7.65E-3) - | 1.000 7E-2 (5.52E-3) |
MW3 | 4.823 8E-3 (2.48E-4) + | 5.059 4E-3 (3.72E-4) = | 5.379 4E-3 (2.79E-4) - | 4.972 9E-3 (2.94E-4) = | 6.136 9E-3 (5.31E-4) - | 5.305 0E-1 (3.61E-1) - | 5.043 2E-3 (2.67E-4) = | 5.113 4E-3 (3.11E-4) |
MW4 | 4.287 0E-2 (4.01E-4) - | 4.655 9E-2 (3.63E-4) - | 4.288 6E-2 (3.53E-4) - | 4.285 6E-2 (4.39E-4) - | 5.764 6E-2 (1.79E-3) - | 6.396 5E-1 (0.00E+0) = | 4.069 2E-2 (3.47E-4) + | 4.121 5E-2 (5.11E-4) |
MW5 | 1.968 3E-3 (5.34E-3) - | 1.261 9E-2 (3.26E-3) - | 3.379 5E-3 (5.42E-3) = | 4.682 3E-3 (9.70E-3) - | 4.276 0E-1 (3.64E-1) - | 6.849 7E-1 (0.00E+0) = | 1.702 7E-3 (6.10E-3) - | 9.635 1E-4 (6.97E-4) |
MW6 | 2.168 1E-2 (1.52E-2) - | 1.143 6E-2 (7.04E-3) = | 1.016 2E-1 (1.56E-1) - | 2.778 5E-2 (2.55E-2) - | 6.353 7E-1 (3.15E-1) - | 7.092 6E-1 (3.75E-1) - | 1.422 0E-2 (7.68E-3) = | 1.032 5E-2 (7.92E-3) |
MW7 | 4.645 9E-3 (5.78E-4) = | 6.868 7E-3 (4.32E-4) - | 4.690 6E-3 (3.34E-4) - | 4.363 4E-3 (2.94E-4) = | 5.496 1E-3 (4.82E-4) - | 5.390 5E-2 (1.40E-1) - | 4.240 8E-3 (1.28E-4) + | 4.437 5E-3 (2.34E-4) |
MW8 | 4.689 1E-2 (3.79E-3) - | 5.343 2E-2 (1.98E-3) - | 5.675 9E-2 (1.91E-2) - | 5.020 2E-2 (1.68E-2) - | 1.407 3E-1 (8.06E-2) - | 6.296 4E-1 (3.78E-1) - | 4.391 7E-2 (1.60E-3) = | 4.338 3E-2 (1.05E-3) |
MW9 | 2.806 8E-2 (1.29E-1) = | 8.567 2E-3 (5.79E-4) - | 5.088 9E-3 (2.06E-3) - | 5.462 7E-3 (1.79E-3) - | 1.773 9E-1 (2.59E-1) - | 6.817 4E-1 (3.06E-1) - | 4.493 8E-3 (1.37E-4) - | 4.489 1E-3 (4.34E-4) |
MW10 | 3.688 0E-2 (2.46E-2) - | 1.759 1E-2 (1.40E-2) - | 1.778 2E-1 (1.94E-1) - | 4.345 6E-2 (3.26E-2) - | 3.989 1E-1 (2.11E-1) - | NaN (NaN) | 2.124 0E-2 (2.49E-2) = | 1.403 5E-2 (1.36E-2) |
MW11 | 6.023 5E-3 (2.08E-4) = | 1.430 7E-2 (1.99E-3) - | 6.894 0E-3 (4.83E-4) - | 6.113 8E-3 (1.44E-4) = | 7.294 5E-3 (3.22E-4) - | 6.780 3E-1 (1.32E-1) - | 6.228 4E-3 (1.30E-4) - | 6.063 8E-3 (1.22E-4) |
MW12 | 4.816 3E-3 (1.27E-4) = | 7.978 3E-3 (8.01E-4) - | 5.346 9E-3 (2.44E-4) - | 1.104 0E-2 (3.20E-2) - | 9.690 4E-2 (1.94E-1) - | 8.615 5E-1 (3.03E-2) - | 4.854 1E-3 (8.98E-5) - | 4.823 3E-3 (1.98E-4) |
MW13 | 5.744 7E-2 (3.24E-2) - | 3.992 5E-2 (2.73E-2) = | 1.370 4E-1 (1.64E-1) - | 6.376 7E-2 (3.88E-2) = | 4.563 1E-1 (3.68E-1) - | 8.222 4E-1 (6.44E-1) - | 3.015 7E-2 (2.33E-2) = | 3.973 0E-2 (2.78E-2) |
MW14 | 9.772 5E-2 (1.83E-3) = | 1.120 6E-1 (4.78E-3) - | 1.086 1E-1 (3.09E-2) + | 9.798 5E-2 (1.92E-3) = | 1.469 0E-1 (3.43E-2) - | 4.181 2E-1 (4.48E-1) - | 9.794 3E-2 (2.21E-3) = | 1.097 6E-1 (3.68E-2) |
表2 8个约束多目标进化算法在MW测试集上的IGD值对比
Tab. 2 Comparisons of IGD of eight constrained multi-objective evolutionary algorithms on MW test suite
问题 | CCMO | C-TAEA | MOEAD-DAE | MSCMO | PPS | ToP | c-DPEA | CMOEA-MSG |
---|---|---|---|---|---|---|---|---|
+/-/= | 2/7/5 | 0/11/3 | 1/12/1 | 0/9/5 | 0/14/0 | 0/10/3 | 3/5/6 | |
MW1 | 1.622 0E-3 (3.22E-5) + | 2.006 9E-3 (6.86E-5) - | 1.185 5E-2 (3.90E-2) - | 3.635 3E-3 (8.16E-3) - | 3.161 1E-3 (2.50E-4) - | 1.306 0E-1 (0.00E+0) = | 1.616 1E-3 (1.05E-5) + | 1.631 0E-3 (9.77E-6) |
MW2 | 2.268 5E-2 (1.53E-2) - | 1.609 1E-2 (6.21E-3) - | 3.727 2E-2 (2.45E-2) - | 2.333 4E-2 (1.53E-2) - | 1.025 1E-1 (8.86E-2) - | 1.672 5E-1 (1.71E-1) - | 1.806 4E-2 (7.65E-3) - | 1.000 7E-2 (5.52E-3) |
MW3 | 4.823 8E-3 (2.48E-4) + | 5.059 4E-3 (3.72E-4) = | 5.379 4E-3 (2.79E-4) - | 4.972 9E-3 (2.94E-4) = | 6.136 9E-3 (5.31E-4) - | 5.305 0E-1 (3.61E-1) - | 5.043 2E-3 (2.67E-4) = | 5.113 4E-3 (3.11E-4) |
MW4 | 4.287 0E-2 (4.01E-4) - | 4.655 9E-2 (3.63E-4) - | 4.288 6E-2 (3.53E-4) - | 4.285 6E-2 (4.39E-4) - | 5.764 6E-2 (1.79E-3) - | 6.396 5E-1 (0.00E+0) = | 4.069 2E-2 (3.47E-4) + | 4.121 5E-2 (5.11E-4) |
MW5 | 1.968 3E-3 (5.34E-3) - | 1.261 9E-2 (3.26E-3) - | 3.379 5E-3 (5.42E-3) = | 4.682 3E-3 (9.70E-3) - | 4.276 0E-1 (3.64E-1) - | 6.849 7E-1 (0.00E+0) = | 1.702 7E-3 (6.10E-3) - | 9.635 1E-4 (6.97E-4) |
MW6 | 2.168 1E-2 (1.52E-2) - | 1.143 6E-2 (7.04E-3) = | 1.016 2E-1 (1.56E-1) - | 2.778 5E-2 (2.55E-2) - | 6.353 7E-1 (3.15E-1) - | 7.092 6E-1 (3.75E-1) - | 1.422 0E-2 (7.68E-3) = | 1.032 5E-2 (7.92E-3) |
MW7 | 4.645 9E-3 (5.78E-4) = | 6.868 7E-3 (4.32E-4) - | 4.690 6E-3 (3.34E-4) - | 4.363 4E-3 (2.94E-4) = | 5.496 1E-3 (4.82E-4) - | 5.390 5E-2 (1.40E-1) - | 4.240 8E-3 (1.28E-4) + | 4.437 5E-3 (2.34E-4) |
MW8 | 4.689 1E-2 (3.79E-3) - | 5.343 2E-2 (1.98E-3) - | 5.675 9E-2 (1.91E-2) - | 5.020 2E-2 (1.68E-2) - | 1.407 3E-1 (8.06E-2) - | 6.296 4E-1 (3.78E-1) - | 4.391 7E-2 (1.60E-3) = | 4.338 3E-2 (1.05E-3) |
MW9 | 2.806 8E-2 (1.29E-1) = | 8.567 2E-3 (5.79E-4) - | 5.088 9E-3 (2.06E-3) - | 5.462 7E-3 (1.79E-3) - | 1.773 9E-1 (2.59E-1) - | 6.817 4E-1 (3.06E-1) - | 4.493 8E-3 (1.37E-4) - | 4.489 1E-3 (4.34E-4) |
MW10 | 3.688 0E-2 (2.46E-2) - | 1.759 1E-2 (1.40E-2) - | 1.778 2E-1 (1.94E-1) - | 4.345 6E-2 (3.26E-2) - | 3.989 1E-1 (2.11E-1) - | NaN (NaN) | 2.124 0E-2 (2.49E-2) = | 1.403 5E-2 (1.36E-2) |
MW11 | 6.023 5E-3 (2.08E-4) = | 1.430 7E-2 (1.99E-3) - | 6.894 0E-3 (4.83E-4) - | 6.113 8E-3 (1.44E-4) = | 7.294 5E-3 (3.22E-4) - | 6.780 3E-1 (1.32E-1) - | 6.228 4E-3 (1.30E-4) - | 6.063 8E-3 (1.22E-4) |
MW12 | 4.816 3E-3 (1.27E-4) = | 7.978 3E-3 (8.01E-4) - | 5.346 9E-3 (2.44E-4) - | 1.104 0E-2 (3.20E-2) - | 9.690 4E-2 (1.94E-1) - | 8.615 5E-1 (3.03E-2) - | 4.854 1E-3 (8.98E-5) - | 4.823 3E-3 (1.98E-4) |
MW13 | 5.744 7E-2 (3.24E-2) - | 3.992 5E-2 (2.73E-2) = | 1.370 4E-1 (1.64E-1) - | 6.376 7E-2 (3.88E-2) = | 4.563 1E-1 (3.68E-1) - | 8.222 4E-1 (6.44E-1) - | 3.015 7E-2 (2.33E-2) = | 3.973 0E-2 (2.78E-2) |
MW14 | 9.772 5E-2 (1.83E-3) = | 1.120 6E-1 (4.78E-3) - | 1.086 1E-1 (3.09E-2) + | 9.798 5E-2 (1.92E-3) = | 1.469 0E-1 (3.43E-2) - | 4.181 2E-1 (4.48E-1) - | 9.794 3E-2 (2.21E-3) = | 1.097 6E-1 (3.68E-2) |
问题 | CCMO | C-TAEA | MOEAD-DAE | MSCMO | PPS | ToP | c-DPEA | CMOEA-MSG |
---|---|---|---|---|---|---|---|---|
+/-/= | 2/6/1 | 3/6/0 | 0/7/2 | 1/4/4 | 2/6/1 | 0/4/0 | 0/6/3 | |
DAS-CMOP1 | 7.117 0E-1 (3.61E-2) - | 1.907 6E-1 (1.51E-2) + | 6.920 6E-1 (4.88E-2) - | 6.633 7E-1 (7.92E-2) - | 1.243 7E-1 (2.02E-1) + | 7.591 4E-1 (1.23E-1) - | 6.343 8E-1 (9.28E-2) = | 5.831 8E-1 (1.34E-1) |
DAS-CMOP2 | 2.398 3E-1 (2.10E-2) - | 9.293 2E-2 (2.96E-2) + | 2.068 5E-1 (3.98E-2) = | 2.150 0E-1 (2.59E-2) = | 5.134 5E-3 (1.51E-4) + | 5.014 2E-1 (2.84E-1) - | 2.149 8E-1 (2.53E-2) = | 2.038 4E-1 (3.44E-2) |
DAS-CMOP3 | 3.279 7E-1 (5.48E-2) - | 1.384 8E-1 (3.11E-2) + | 2.670 0E-1 (8.88E-2) = | 2.718 3E-1 (4.44E-2) = | 2.797 1E-1 (1.22E-1) - | 6.954 3E-1 (1.18E-1) - | 2.853 0E-1 (5.68E-2) = | 2.464 3E-1 (2.71E-2) |
DAS-CMOP4 | 1.362 4E-3 (7.33E-4) = | 1.119 1E-2 (2.37E-3) - | 1.378 6E-3 (1.52E-4) - | 1.185 2E-3 (1.23E-4) - | 1.416 3E-1 (7.93E-2) - | NaN (NaN) | 1.903 7E-3 (1.22E-3) - | 1.182 2E-3 (4.11E-5) |
DAS-CMOP5 | 2.703 3E-3 (5.13E-5) + | 7.278 1E-3 (6.16E-4) - | 3.415 5E-3 (3.44E-4) - | 2.744 5E-3 (6.85E-5) = | 5.051 3E-3 (3.24E-3) - | NaN (NaN) | 2.959 0E-3 (1.87E-4) - | 2.764 1E-3 (7.27E-5) |
DAS-CMOP6 | 2.176 4E-2 (7.15E-3) - | 2.403 1E-2 (2.55E-3) - | 4.758 6E-2 (6.30E-2) - | 3.686 8E-2 (5.74E-2) - | 2.868 9E-1 (3.16E-1) - | NaN (NaN) | 2.037 3E-2 (5.75E-3) - | 1.703 3E-2 (8.62E-3) |
DAS-CMOP7 | 3.057 0E-2 (5.29E-4) + | 3.838 2E-2 (8.53E-4) - | 3.737 0E-2 (2.72E-3) - | 3.074 5E-2 (7.72E-4) + | 6.460 8E-2 (1.95E-2) - | NaN (NaN) | 3.185 6E-2 (9.26E-4) - | 3.107 5E-2 (5.51E-4) |
DAS-CMOP8 | 4.030 6E-2 (7.81E-4) - | 5.525 3E-2 (4.56E-3) - | 4.930 3E-2 (4.27E-3) - | 3.937 5E-2 (9.29E-4) = | 8.094 4E-2 (3.32E-2) - | NaN (NaN) | 4.129 8E-2 (1.87E-3) - | 3.927 9E-2 (7.53E-4) |
DAS-CMOP9 | 3.512 2E-1 (6.46E-2) - | 2.194 9E-1 (5.73E-2) - | 4.864 2E-1 (2.07E-1) - | 2.180 4E-1 (8.38E-2) - | 1.693 3E-1 (1.31E-1) = | 5.958 3E-1 (2.59E-1) - | 2.077 1E-1 (7.14E-2) - | 1.454 3E-1 (6.91E-2) |
表3 8个约束多目标进化算法在DAS-CMOP测试集上的IGD值对比
Tab. 3 Comparisons of IGD of eight constrained multi-objective evolutionary algorithms on DAS-CMOP test suite
问题 | CCMO | C-TAEA | MOEAD-DAE | MSCMO | PPS | ToP | c-DPEA | CMOEA-MSG |
---|---|---|---|---|---|---|---|---|
+/-/= | 2/6/1 | 3/6/0 | 0/7/2 | 1/4/4 | 2/6/1 | 0/4/0 | 0/6/3 | |
DAS-CMOP1 | 7.117 0E-1 (3.61E-2) - | 1.907 6E-1 (1.51E-2) + | 6.920 6E-1 (4.88E-2) - | 6.633 7E-1 (7.92E-2) - | 1.243 7E-1 (2.02E-1) + | 7.591 4E-1 (1.23E-1) - | 6.343 8E-1 (9.28E-2) = | 5.831 8E-1 (1.34E-1) |
DAS-CMOP2 | 2.398 3E-1 (2.10E-2) - | 9.293 2E-2 (2.96E-2) + | 2.068 5E-1 (3.98E-2) = | 2.150 0E-1 (2.59E-2) = | 5.134 5E-3 (1.51E-4) + | 5.014 2E-1 (2.84E-1) - | 2.149 8E-1 (2.53E-2) = | 2.038 4E-1 (3.44E-2) |
DAS-CMOP3 | 3.279 7E-1 (5.48E-2) - | 1.384 8E-1 (3.11E-2) + | 2.670 0E-1 (8.88E-2) = | 2.718 3E-1 (4.44E-2) = | 2.797 1E-1 (1.22E-1) - | 6.954 3E-1 (1.18E-1) - | 2.853 0E-1 (5.68E-2) = | 2.464 3E-1 (2.71E-2) |
DAS-CMOP4 | 1.362 4E-3 (7.33E-4) = | 1.119 1E-2 (2.37E-3) - | 1.378 6E-3 (1.52E-4) - | 1.185 2E-3 (1.23E-4) - | 1.416 3E-1 (7.93E-2) - | NaN (NaN) | 1.903 7E-3 (1.22E-3) - | 1.182 2E-3 (4.11E-5) |
DAS-CMOP5 | 2.703 3E-3 (5.13E-5) + | 7.278 1E-3 (6.16E-4) - | 3.415 5E-3 (3.44E-4) - | 2.744 5E-3 (6.85E-5) = | 5.051 3E-3 (3.24E-3) - | NaN (NaN) | 2.959 0E-3 (1.87E-4) - | 2.764 1E-3 (7.27E-5) |
DAS-CMOP6 | 2.176 4E-2 (7.15E-3) - | 2.403 1E-2 (2.55E-3) - | 4.758 6E-2 (6.30E-2) - | 3.686 8E-2 (5.74E-2) - | 2.868 9E-1 (3.16E-1) - | NaN (NaN) | 2.037 3E-2 (5.75E-3) - | 1.703 3E-2 (8.62E-3) |
DAS-CMOP7 | 3.057 0E-2 (5.29E-4) + | 3.838 2E-2 (8.53E-4) - | 3.737 0E-2 (2.72E-3) - | 3.074 5E-2 (7.72E-4) + | 6.460 8E-2 (1.95E-2) - | NaN (NaN) | 3.185 6E-2 (9.26E-4) - | 3.107 5E-2 (5.51E-4) |
DAS-CMOP8 | 4.030 6E-2 (7.81E-4) - | 5.525 3E-2 (4.56E-3) - | 4.930 3E-2 (4.27E-3) - | 3.937 5E-2 (9.29E-4) = | 8.094 4E-2 (3.32E-2) - | NaN (NaN) | 4.129 8E-2 (1.87E-3) - | 3.927 9E-2 (7.53E-4) |
DAS-CMOP9 | 3.512 2E-1 (6.46E-2) - | 2.194 9E-1 (5.73E-2) - | 4.864 2E-1 (2.07E-1) - | 2.180 4E-1 (8.38E-2) - | 1.693 3E-1 (1.31E-1) = | 5.958 3E-1 (2.59E-1) - | 2.077 1E-1 (7.14E-2) - | 1.454 3E-1 (6.91E-2) |
1 | HE C, CHENG R, ZHANG C, et al. Evolutionary large-scale multiobjective optimization for ratio error estimation of voltage transformers[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(5): 868-881. 10.1109/tevc.2020.2967501 |
2 | JOZEFOWIEZ N, SEMET F, TALBI E G. Multi-objective vehicle routing problems[J]. European Journal of Operational Research, 2008, 189(2): 293-309. 10.1016/j.ejor.2007.05.055 |
3 | ALI I M, ESSAM D, KASMARIK K. Novel binary differential evolution algorithm for knapsack problems[J]. Information Sciences, 2021, 542: 177-194. 10.1016/j.ins.2020.07.013 |
4 | TESSEMA B, YEN G G. An adaptive penalty formulation for constrained evolutionary optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans, 2009, 39(3): 565-578. 10.1109/tsmca.2009.2013333 |
5 | DEB K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2/3/4): 311-338. 10.1016/s0045-7825(99)00389-8 |
6 | RUNARSSON T P, YAO X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284-294. 10.1109/4235.873238 |
7 | FAN Z, LI H, WEI C, et al. An improved epsilon constraint handling method embedded in MOEA/D for constrained multi-objective optimization problems[C]// Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2016: 1-8. 10.1109/ssci.2016.7850224 |
8 | CAI Z, WANG Y. A multiobjective optimization-based evolutionary algorithm for constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 658-675. 10.1109/tevc.2006.872344 |
9 | MALLIPEDDI R, SUGANTHAN P N. Ensemble of constraint handling techniques[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(4): 561-579. 10.1109/tevc.2009.2033582 |
10 | FAN Z, LI W, CAI X, et al. Push and pull search for solving constrained multi-objective optimization problems[J]. Swarm and Evolutionary Computation, 2019, 44: 665-679. 10.1016/j.swevo.2018.08.017 |
11 | TIAN Y, ZHANG T, XIAO J, et al. A coevolutionary framework for constrained multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2020, 25(1): 102-116. 10.1109/tevc.2020.3004012 |
12 | LIANG J, QIAO K, YU K, et al. Utilizing the relationship between unconstrained and constrained Pareto fronts for constrained multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2023, 53(6): 3873-3886. 10.1109/tcyb.2022.3163759 |
13 | MA H, WEI H, TIAN Y, et al. A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints[J]. Information Sciences, 2021, 560: 68-91. 10.1016/j.ins.2021.01.029 |
14 | LIU Z Z, WANG Y. Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 870-884. 10.1109/tevc.2019.2894743 |
15 | LI K, CHEN R, FU G, et al. Two-archive evolutionary algorithm for constrained multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(2): 303-315. 10.1109/tevc.2018.2855411 |
16 | MING M, TRIVEDI A, WANG R, et al. A dual-population-based evolutionary algorithm for constrained multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(4): 739-753. 10.1109/tevc.2021.3066301 |
17 | JIN Y, SENDHOFF B. Pareto-based multiobjective machine learning: an overview and case studies[J]. IEEE Transactions on Systems, Man, and Cybernetics — Part C: Applications and Reviews, 2008, 38(3): 397-415. 10.1109/tsmcc.2008.919172 |
18 | NOEL M M. A new gradient based particle swarm optimization algorithm for accurate computation of global minimum[J]. Applied Soft Computing, 2012, 12(1): 353-359. 10.1016/j.asoc.2011.08.037 |
19 | YANG S, TIAN Y, HE C, et al. A gradient-guided evolutionary approach to training deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 4861-4875. 10.1109/tnnls.2021.3061630 |
20 | TIAN Y, CHEN H, MA H, et al. Integrating conjugate gradients into evolutionary algorithms for large-scale continuous multi-objective optimization[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(10): 1801-1817. 10.1109/jas.2022.105875 |
21 | ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization, TIK-Report 103[R/OL]// Zurich: Swiss Federal Institute of Technology, 2001 [2023-11-05]. . |
22 | DEB K, AGRAWAL R B. Simulated binary crossover for continuous search space[J]. Complex Systems, 1995, 9(4): 115-148. |
23 | DEB K, GOYAL M. A combined Genetic Adaptive Search (GeneAS) for engineering design[J]. Computer Science and Informatics, 1996, 26(4): 30-45. |
24 | ZHU Q, ZHANG Q, LIN Q. A constrained multiobjective evolutionary algorithm with detect-and-escape strategy[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(5): 938-947. 10.1109/tevc.2020.2981949 |
25 | FAN Z, LI W, CAI X, et al. An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions[J]. Soft Computing, 2019, 23: 12491-12510. 10.1007/s00500-019-03794-x |
26 | MA Z, WANG Y. Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6): 972-986. 10.1109/tevc.2019.2896967 |
27 | FAN Z, LI W, CAI X, et al. Difficulty adjustable and scalable constrained multiobjective test problem toolkit[J]. Evolutionary Computation, 2020, 28(3): 339-378. 10.1162/evco_a_00259 |
28 | TIAN Y, CHENG R, ZHANG X, et al. PlatEMO: a Matlab platform for evolutionary multi-objective optimization[J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87. 10.1109/mci.2017.2742868 |
29 | ZITZLER E, THIELE L, LAUMANNS M, et al. Performance assessment of multiobjective optimizers: an analysis and review[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 117-132. 10.1109/tevc.2003.810758 |
30 | TIAN Y, XIANG X, ZHANG X, et al. Sampling reference points on the Pareto fronts of benchmark multi-objective optimization problems[C]// Proceedings of the 2018 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2018: 1-6. 10.1109/cec.2018.8477730 |
31 | HE C, CHENG R, TIAN Y, et al. Paired offspring generation for constrained large-scale multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(3): 448-462. 10.1109/tevc.2020.3047835 |
32 | 王朝,黄慧涛,张晶,等.基于解空间降维的大规模约束多目标进化算法[J].电子学报,2023,51(11):3120-3127. 10.12263/DZXB.20230548 |
WANG C, HUANG H T, ZHANG J, et al. A large-scale constrained multi-objective optimization algorithm based on solution space reduction[J]. Acta Electonica Sinica, 2023, 51(11): 3120-3127. 10.12263/DZXB.20230548 | |
33 | 于坤杰,杨振宇,乔康加,等.自适应两阶段大规模约束多目标进化算法[J].郑州大学学报(工学版),2023,44(5):1-9. |
YU K J, YANG Z Y, QIAO K J, et al. Adaptive two-stage large-scale constrained multi-objective evolutionary algorithm[J]. Journal of Zhengzhou University (Engineering Science),2023,44(5): 1-9. |
[1] | 田茂江, 陈鸣科, 堵威, 杜文莉. 面向大规模重叠问题的两阶段差分分组方法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1348-1354. |
[2] | 张莞婷, 杜文莉, 堵威. 基于多时间尺度协同的大规模原油调度进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1355-1363. |
[3] | 赵佳伟, 陈雪峰, 冯亮, 候亚庆, 朱泽轩, Yew‑Soon Ong. 优化场景视角下的进化多任务优化综述[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1325-1337. |
[4] | 马勇健, 史旭华, 王佩瑶. 基于两阶段搜索与动态资源分配的约束多目标进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 269-277. |
[5] | 郭茂祖, 张雅喆, 赵玲玲. 基于空间语义和个体活动的电动汽车充电站选址方法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2819-2827. |
[6] | 徐赛娟, 裴镇宇, 林佳炜, 刘耿耿. 基于多阶段搜索的约束多目标进化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2345-2351. |
[7] | 李二超, 程艳丽. 基于权重向量聚类的动态多目标进化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2226-2236. |
[8] | 高智慧, 韩萌, 刘淑娟, 李昂, 穆栋梁. 基于智能优化算法的高效用项集挖掘方法综述[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1676-1686. |
[9] | 王彬, 向甜, 吕艺东, 王晓帆. 基于NSGA‑Ⅱ的自适应多尺度特征通道分组优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1401-1408. |
[10] | 张宇, 蔡英, 崔剑阳, 张猛, 范艳芳. 卷积神经网络中基于差分隐私的动量梯度下降算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3647-3653. |
[11] | 田蕾, 葛丽娜. 基于差分隐私的广告推荐算法[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3346-3350. |
[12] | 高乾顺, 范纯龙, 李炎达, 滕一平. 基于差分进化的神经网络通用扰动生成方法[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3436-3442. |
[13] | 李二超, 张生辉. 基于新评价指标自适应预测的动态多目标优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 3178-3187. |
[14] | 陈揆能, 袁小芳. 多目标混合进化算法求解加工时间可控的开放车间调度问题[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2617-2627. |
[15] | 沈瑜, 李和成, 陈黎娟. 基于近似技术的双层规划进化算法[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2511-2518. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||