《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (5): 1596-1605.DOI: 10.11772/j.issn.1001-9081.2022040536
所属专题: 多媒体计算与计算机仿真
郭劲文1, 马兴华1, 骆功宁1, 王玮1, 曹阳2, 王宽全1()
收稿日期:
2022-04-21
修回日期:
2022-07-05
接受日期:
2022-07-08
发布日期:
2022-08-05
出版日期:
2023-05-10
通讯作者:
王宽全
作者简介:
郭劲文(1997—),男,宁夏银川人,硕士研究生,主要研究方向:医学图像处理、计算机视觉基金资助:
Jinwen GUO1, Xinghua MA1, Gongning LUO1, Wei WANG1, Yang CAO2, Kuanquan WANG1()
Received:
2022-04-21
Revised:
2022-07-05
Accepted:
2022-07-08
Online:
2022-08-05
Published:
2023-05-10
Contact:
Kuanquan WANG
About author:
GUO Jinwen, born in 1997, M. S. candidate. His research interests include medical image processing, computer vision.Supported by:
摘要:
为去除导丝伪影以提高血管内光学相干断层扫描(IVOCT)的图像质量,辅助医师更加准确地诊断心血管疾病,降低误诊及漏诊的概率,针对IVOCT图像结构信息复杂且伪影区域占比大的难点,提出一种采用生成对抗网络(GAN)架构的基于Transformer的结构强化网络(SETN)。首先,GAN的生成器在提取纹理特征的原始图像(ORI)主干生成网络的基础上,并联了RTV(Relative Total Variation)图像强化生成网络用于获取图像的结构信息;其次,在ORI/RTV图像的伪影区域重建过程中,引入了分别关注时/空间域信息的Transformer编码器,用于捕获IVOCT图像序列的上下文信息以及纹理/结构特征之间的关联性;最后,利用结构特征融合模块将不同层次的结构特征融入ORI主干生成网络的解码阶段,配合判别器完成导丝伪影区域的图像重建。实验结果表明,SETN的导丝伪影去除结果在纹理和结构的重建上均十分优秀。此外,导丝伪影去除后IVOCT图像质量的提高,对于IVOCT图像的易损斑块分割及管腔轮廓线提取任务均具有积极意义。
中图分类号:
郭劲文, 马兴华, 骆功宁, 王玮, 曹阳, 王宽全. 基于Transformer的结构强化IVOCT导丝伪影去除方法[J]. 计算机应用, 2023, 43(5): 1596-1605.
Jinwen GUO, Xinghua MA, Gongning LUO, Wei WANG, Yang CAO, Kuanquan WANG. Guidewire artifact removal method of structure-enhanced IVOCT based on Transformer[J]. Journal of Computer Applications, 2023, 43(5): 1596-1605.
损失函数 | 参数名称 | 参数值 |
---|---|---|
缺失区域与未缺失区域 | 1.00 | |
1.00 | ||
ORI与RTV | 0.20 | |
0.20 | ||
重建与对抗 | 1.00 | |
0.01 |
表1 损失函数参数值
Tab. 1 Parameter values of loss function
损失函数 | 参数名称 | 参数值 |
---|---|---|
缺失区域与未缺失区域 | 1.00 | |
1.00 | ||
ORI与RTV | 0.20 | |
0.20 | ||
重建与对抗 | 1.00 | |
0.01 |
方法 | PSNR/dB | SSIM/% | MAE | FID |
---|---|---|---|---|
VINet[ | 32.32 | 93.79 | 0.017 5 | 23.87 |
LGTSM[ | 32.85 | 94.58 | 0.017 2 | 16.37 |
CAP[ | 34.68 | 95.60 | 0.016 8 | 18.26 |
STTN[ | 35.21 | 96.08 | 0.016 4 | 10.75 |
SETNTR- | 27.16 | 92.02 | 0.018 2 | 65.05 |
SETNRTV- | 35.51 | 96.11 | 0.016 2 | 10.99 |
SETN | 36.03 | 96.25 | 0.015 4 | 9.32 |
表2 导丝伪影去除的评估结果
Tab. 2 Evaluation results of guidewire artifact removal
方法 | PSNR/dB | SSIM/% | MAE | FID |
---|---|---|---|---|
VINet[ | 32.32 | 93.79 | 0.017 5 | 23.87 |
LGTSM[ | 32.85 | 94.58 | 0.017 2 | 16.37 |
CAP[ | 34.68 | 95.60 | 0.016 8 | 18.26 |
STTN[ | 35.21 | 96.08 | 0.016 4 | 10.75 |
SETNTR- | 27.16 | 92.02 | 0.018 2 | 65.05 |
SETNRTV- | 35.51 | 96.11 | 0.016 2 | 10.99 |
SETN | 36.03 | 96.25 | 0.015 4 | 9.32 |
方法 | PA | MPA | IoU | DICE | Precision | Recall |
---|---|---|---|---|---|---|
未处理 | 94.67 | 92.15 | 86.95 | 84.31 | 91.60 | 87.41 |
STTN[ | 98.20 | 97.20 | 95.05 | 94.11 | 96.82 | 95.42 |
SETNRTV- | 98.58 | 97.19 | 95.57 | 94.69 | 97.68 | 95.17 |
SETN | 98.59 | 97.29 | 95.72 | 95.24 | 95.22 | 95.22 |
表3 不同输入的分割结果 ( %)
Tab. 3 Segmentation results of different input
方法 | PA | MPA | IoU | DICE | Precision | Recall |
---|---|---|---|---|---|---|
未处理 | 94.67 | 92.15 | 86.95 | 84.31 | 91.60 | 87.41 |
STTN[ | 98.20 | 97.20 | 95.05 | 94.11 | 96.82 | 95.42 |
SETNRTV- | 98.58 | 97.19 | 95.57 | 94.69 | 97.68 | 95.17 |
SETN | 98.59 | 97.29 | 95.72 | 95.24 | 95.22 | 95.22 |
1 | 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6):521-545. 10.3969/j.issn.1000-3614.2021.06.001 |
The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases burden in China: an updated summary of 2020[J]. Chinese Circulation Journal, 2021, 36(6): 521-545. 10.3969/j.issn.1000-3614.2021.06.001 | |
2 | 韩涛,邱建榕,王迪,等. 光学相干层析显微成像的技术与应用[J]. 中国激光, 2020, 47(2): No.0207004. 10.3788/cjl202047.0207004 |
HAN T, QIU J R, WANG D, et al. Optical coherence microscopy and its application[J]. Chinese Journal of Lasers, 2020, 47(2): No.0207004. 10.3788/cjl202047.0207004 | |
3 | 陆冬筱,房文汇,李玉瑶,等. 光学相干层析成像技术原理及研究进展[J]. 中国光学, 2020, 13(5):919-935. 10.37188/CO.2020-0037 |
LU D X, FANG W H, LI Y Y, et al. Optical coherence tomography: principles and recent developments[J]. Chinese Optics, 2020, 13(5):919-935. 10.37188/CO.2020-0037 | |
4 | FERCHER A F, DREXLER W, HITZENBERGER C K, et al. Optical coherence tomography - principles and applications[J]. Reports on Progress in Physics, 2003, 66(2): No.239. 10.1088/0034-4885/66/2/204 |
5 | FERCHER A F. Optical coherence tomography - development, principles, applications[J]. Zeitschrift für Medizinische Physik, 2010, 20(4): 251-276. 10.1016/j.zemedi.2009.11.002 |
6 | JANG I K, BOUMA B E, KANG D H, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound[J]. Journal of the American College of Cardiology, 2002, 39(4): 604-609. 10.1016/s0735-1097(01)01799-5 |
7 | TEARNEY G J, REGAR E, AKASAKA T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation[J]. Journal of the American College of Cardiology, 2012, 59(12): 1058-1072. 10.1016/j.jacc.2011.09.079 |
8 | REGAR E, AKASAKA T, ADRIAENSSENS T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies[J]. Journal of the American College of Cardiology, 2012, 59: 1058-1072. |
9 | PRATI F, CERA M, RAMAZZOTTI V, et al. Safety and feasibility of a new non-occlusive technique for facilitated intracoronary Optical Coherence Tomography (OCT) acquisition in various clinical and anatomical scenarios[J]. EuroIntervention, 2007, 3(3): 365-370. 10.4244/eijv3i3a66 |
10 | XU L, YAN Q, XIA Y, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics, 2012, 31(6): No.139. 10.1145/2366145.2366158 |
11 | YU L F, LI H, MUELLER J, et al. Metal artifact reduction from reformatted projections for hip prostheses in multislice helical computed tomography: techniques and initial clinical results[J]. Investigative Radiology, 2009, 44(11): 691-696. 10.1097/rli.0b013e3181b0a2f9 |
12 | LIU J Y, YANG S, FANG Y M, et al. Structure-guided image inpainting using homography transformation[J]. IEEE Transactions on Multimedia, 2018, 20(12): 3252-3265. 10.1109/tmm.2018.2831636 |
13 | DING D, RAM S, RODRIGUEZ J J. Image inpainting using nonlocal texture matching and nonlinear filtering[J]. IEEE Transactions on Image Processing, 2019, 28(4): 1705-1719. 10.1109/tip.2018.2880681 |
14 | LI H, LUO W, HUANG J. Localization of diffusion-based inpainting in digital images[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(12): 3050-3064. 10.1109/tifs.2017.2730822 |
15 | SRIDEVI G, SRINIVAS KUMAR S. Image inpainting based on fractional-order nonlinear diffusion for image reconstruction[J]. Circuits, Systems, and Signal Processing, 2019, 38(8): 3802-3817. 10.1007/s00034-019-01029-w |
16 | XIE J Y, XU L L, CHEN E H. Image denoising and inpainting with deep neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems — Volume 1. Red Hook, NY: Curran Associates Inc., 2012: 341-349. |
17 | FAVORSKAYA M, DAMOV M, ZOTIN A. Intelligent texture reconstruction of missing data in video sequences using neural networks[M]// TWEEDALE J W, JAIN, L C. Advanced Techniques for Knowledge Engineering and Innovative Applications: 16th International Conference, KES 2012, San Sebastian, Spain, September 10-12, 2012, Revised Selected Papers, CCIS 246. Berlin: Springer, 2013: 163-176. 10.1007/978-3-642-42017-7_12 |
18 | KÖHLER R, SCHULER C, SCHÖLKOPF B, et al. Mask-specific inpainting with deep neural networks[C]// Proceedings of the 2014 German Conference on Pattern Recognition, LNCS 8753. Cham: Springer, 2014: 523-534. |
19 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2014: 2672-2680. |
20 | KIM D, WOO S, LEE J Y, et al. Deep video inpainting[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5785-5794. 10.1109/cvpr.2019.00594 |
21 | CHANG Y L, LIU Z Y, LEE K Y, et al. Free-form video inpainting with 3D gated convolution and Temporal PatchGAN[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9065-9074. 10.1109/iccv.2019.00916 |
22 | LEE S, OH S W, WON D, et al. Copy-and-paste networks for deep video inpainting[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 4412-4420. 10.1109/iccv.2019.00451 |
23 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. |
24 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. (2021-06-03) [2022-03-22].. |
25 | JIANG Y F, CHANG S Y, WANG Z Y. TransGan: two pure transformers can make one strong GAN, and that can scale up[C/OL]// Proceedings of the 35th Conference on Neural Information Processing Systems [2022-03-22]. . |
26 | ZENG Y H, FU J L, CHAO H Y. Learning joint spatial-temporal transformations for video inpainting[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12361. Cham: Springer, 2020: 528-543. |
[1] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[2] | 杨鑫, 陈雪妮, 吴春江, 周世杰. 结合变种残差模型和Transformer的城市公路短时交通流预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2947-2951. |
[3] | 任烈弘, 黄铝文, 田旭, 段飞. 基于DFT的频率敏感双分支Transformer多变量长时间序列预测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2739-2746. |
[4] | 贾洁茹, 杨建超, 张硕蕊, 闫涛, 陈斌. 基于自蒸馏视觉Transformer的无监督行人重识别[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2893-2902. |
[5] | 李金金, 桑国明, 张益嘉. APK-CNN和Transformer增强的多域虚假新闻检测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2674-2682. |
[6] | 方介泼, 陶重犇. 应对零日攻击的混合车联网入侵检测系统[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2763-2769. |
[7] | 丁宇伟, 石洪波, 李杰, 梁敏. 基于局部和全局特征解耦的图像去噪网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2571-2579. |
[8] | 邓凯丽, 魏伟波, 潘振宽. 改进掩码自编码器的工业缺陷检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2595-2603. |
[9] | 杨帆, 邹窈, 朱明志, 马振伟, 程大伟, 蒋昌俊. 基于图注意力Transformer神经网络的信用卡欺诈检测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2634-2642. |
[10] | 刘丽, 侯海金, 王安红, 张涛. 基于多尺度注意力的生成式信息隐藏算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2102-2109. |
[11] | 李大海, 王忠华, 王振东. 结合空间域和频域信息的双分支低光照图像增强网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2175-2182. |
[12] | 吕锡婷, 赵敬华, 荣海迎, 赵嘉乐. 基于Transformer和关系图卷积网络的信息传播预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1760-1766. |
[13] | 黄梦源, 常侃, 凌铭阳, 韦新杰, 覃团发. 基于层间引导的低光照图像渐进增强算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1911-1919. |
[14] | 黎施彬, 龚俊, 汤圣君. 基于Graph Transformer的半监督异配图表示学习模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1816-1823. |
[15] | 席治远, 唐超, 童安炀, 王文剑. 基于双路时空网络的驾驶员行为识别[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1511-1519. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||