《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (6): 1958-1968.DOI: 10.11772/j.issn.1001-9081.2022050745
董润婷1, 吴利1(), 王晓英1, 曹腾飞1, 黄建强1, 管琴2, 吴洁瑕3
收稿日期:
2022-05-24
修回日期:
2022-09-07
接受日期:
2022-09-12
发布日期:
2023-06-08
出版日期:
2023-06-10
通讯作者:
吴利
作者简介:
董润婷(1998—),女,河南郑州人,硕士研究生,主要研究方向:人工智能基金资助:
Runting DONG1, Li WU1(), Xiaoying WANG1, Tengfei CAO1, Jianqiang HUANG1, Qin GUAN2, Jiexia WU3
Received:
2022-05-24
Revised:
2022-09-07
Accepted:
2022-09-12
Online:
2023-06-08
Published:
2023-06-10
Contact:
Li WU
About author:
DONG Runting, born in 1998, M. S. candidate. Her research interests include artificial intelligence.Supported by:
摘要:
随着传感器网络和全球定位系统等技术的进步,兼有时间与空间特性的气象数据体量呈爆炸式增长,针对时空序列预测(STSF)的深度学习模型研究得到了迅猛发展。然而,长期以来用于天气预报的传统机器学习方法在提取数据的时间相关性与空间依赖性方面的效果往往并不理想。与此同时,深度学习方法通过人工神经网络自动提取特征,可以有效提高天气预报的准确度,并且在编码长期空间信息的建模方面有相当优秀的效果。同时,由观测数据驱动的深度学习模型与基于物理理论的数值天气预报(NWP)模型结合的方式可以构建拥有更高预测精度与更长预报时间的混合模型。基于这些,将深度学习在天气预报领域的应用分析及研究进展进行了综述。首先,将天气预报领域的深度学习问题与经典深度学习问题从数据格式、问题模型与评价指标这3个方面进行了对比研究;然后,回顾了深度学习在天气预报领域的发展历程与应用现状,并总结分析了深度学习技术与NWP结合的最新进展;最后,展望了未来的发展方向和研究重点,为天气预报领域的深度学习研究提供参考。
中图分类号:
董润婷, 吴利, 王晓英, 曹腾飞, 黄建强, 管琴, 吴洁瑕. 深度学习在天气预报领域的应用分析及研究进展综述[J]. 计算机应用, 2023, 43(6): 1958-1968.
Runting DONG, Li WU, Xiaoying WANG, Tengfei CAO, Jianqiang HUANG, Qin GUAN, Jiexia WU. Review of application analysis and research progress of deep learning in weather forecasting[J]. Journal of Computer Applications, 2023, 43(6): 1958-1968.
真实 类别 | 预测类别 | |
---|---|---|
晴 | 雨 | |
晴 | Correct_negatives(正确负样本) | False_alarms(误警) |
雨 | Misses(漏报) | Hits(命中) |
表1 气象领域的混淆矩阵
Tab. 1 Confusion matrix in meteorological field
真实 类别 | 预测类别 | |
---|---|---|
晴 | 雨 | |
晴 | Correct_negatives(正确负样本) | False_alarms(误警) |
雨 | Misses(漏报) | Hits(命中) |
指标 | 公式原理 | 评估标准 |
---|---|---|
关键成功指数 | 结果越大越好 | |
误警率 | 结果越小越好 | |
检测率 | 结果越大越好 |
表2 气象分类问题的评估指标
Tab. 2 Evaluation metrics for meteorological classification problems
指标 | 公式原理 | 评估标准 |
---|---|---|
关键成功指数 | 结果越大越好 | |
误警率 | 结果越小越好 | |
检测率 | 结果越大越好 |
指标 | 公式原理 | 评估标准 |
---|---|---|
均方误差 | RMSE的开平方计算, 使结果在数量级上 比MSE更直观 | |
均方根误差 | ||
平均绝对误差 | V | MAE的评估对象是 误差,MAPE评估的 则是误差与真实值的 百分比 |
平均绝对 百分比误差 |
表3 气象回归问题的评估指标
Tab. 3 Evaluation metrics for meteorological regression problems
指标 | 公式原理 | 评估标准 |
---|---|---|
均方误差 | RMSE的开平方计算, 使结果在数量级上 比MSE更直观 | |
均方根误差 | ||
平均绝对误差 | V | MAE的评估对象是 误差,MAPE评估的 则是误差与真实值的 百分比 |
平均绝对 百分比误差 |
天气预报问题 | 深度学习模型 | 评价指标 |
---|---|---|
冰雹、雷电、台风检测 | LightGBM,CNN | FAR,POD |
热带/温带气旋、热带低压等极端天气的多类检测和定位识别 | CNN,LSTM | MAE,POD,FAR,IoU |
风速风向预测 | LSTM-CNN,E-STAN-MLP | RMSE,MAE |
降水量、温度预测 | 3D-CNN+LSTM,LSTM+U-Net,ConvGRU | |
天气现象分类(晴、雨、雪) | CNN,CNN-LSTM,AlexNet | CSI,FAR,POD |
降水临近预报 | ConvLSTM,PredRNN |
表4 天气预报问题和对应评价指标
Tab. 4 Weather forecasting problems and corresponding evaluation metrics
天气预报问题 | 深度学习模型 | 评价指标 |
---|---|---|
冰雹、雷电、台风检测 | LightGBM,CNN | FAR,POD |
热带/温带气旋、热带低压等极端天气的多类检测和定位识别 | CNN,LSTM | MAE,POD,FAR,IoU |
风速风向预测 | LSTM-CNN,E-STAN-MLP | RMSE,MAE |
降水量、温度预测 | 3D-CNN+LSTM,LSTM+U-Net,ConvGRU | |
天气现象分类(晴、雨、雪) | CNN,CNN-LSTM,AlexNet | CSI,FAR,POD |
降水临近预报 | ConvLSTM,PredRNN |
1 | ATLURI G, KARPATNE A, KUMAR V. Spatio-temporal data mining: a survey of problems and methods [J]. ACM Computing Surveys, 2018, 51(4): No.83. 10.1145/3161602 |
2 | REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science [J]. Nature, 2019, 566(7743): 195-204. 10.1038/s41586-019-0912-1 |
3 | 谢莒芃,张华军,黄双,等. 基于残差U型卷积网络的海面风速多步时空预测[J/OL]. 控制与决策 (2022-04-05) [2022-05-20].. |
XIE J F, ZHANG H J, HUANG S, et al. Multi-step sea surface wind speed spatio-temporal prediction based on residual UNet [J/OL]. Control and Decision (2022-04-05) [2022-05-20].. | |
4 | CASELLAS E, BECH J, VECIANA R, et al. Nowcasting the precipitation phase combining weather radar data, surface observations, and NWP model forecasts [J]. Quarterly Journal of the Royal Meteorological Society, 2021, 147(739): 3135-3153. 10.1002/qj.4121 |
5 | LAGERQUIST R, McGOVERN A, HOMEYER C R, et al. Deep learning on three-dimensional multiscale data for next-hour tornado prediction [J]. Monthly Weather Review, 2020, 148(7): 2837-2861. 10.1175/mwr-d-19-0372.1 |
6 | 周康辉,郑永光,韩雷,等. 机器学习在强对流监测预报中的应用进展[J]. 气象, 2021, 47(3):274-289. 10.7519/j.issn.1000-0526.2021.03.002 |
ZHOU K H, ZHENG Y G, HAN L, et al. Advances in application of machine learning to severe convective weather monitoring and forecasting[J]. Meteorological Monthly, 2021, 47(3): 274-289. 10.7519/j.issn.1000-0526.2021.03.002 | |
7 | 陈思玮,贾克斌,王聪聪,等. 深度学习在多天气分类算法中的研究与应用[J]. 高技术通讯, 2020, 30(10):1010-1017. 10.3772/j.issn.1002-0470.2020.10.003 |
CHEN S W, JIA K B, WANG C C, et al. Research and application of deep learning in multi-weather classification algorithms [J]. Chinese High Technology Letters, 2020, 30(10):1010-1017. 10.3772/j.issn.1002-0470.2020.10.003 | |
8 | ZHANG Z C, LIN X, LI M, et al. A customized deep learning approach to integrate network-scale online traffic data imputation and prediction[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: No.103372. 10.1016/j.trc.2021.103372 |
9 | XU L, CHEN N, CHEN Z, et al. Spatiotemporal forecasting in earth system science: methods, uncertainties, predictability and future directions [J]. Earth-Science Reviews, 2021, 222: 103828. 10.1016/j.earscirev.2021.103828 |
10 | AGAPIOU A. Remote sensing heritage in a petabyte-scale: satellite data and heritage Earth Engine© applications[J]. International Journal of Digital Earth, 2017, 10(1): 85-102. 10.1080/17538947.2016.1250829 |
11 | YUAN Q Q, SHEN H F, LI T W, et al. Deep learning in environmental remote sensing: achievements and challenges [J]. Remote Sensing of Environment, 2020, 241: No.111716. 10.1016/j.rse.2020.111716 |
12 | ZHENG C, FAN X, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34: 1234-1241. 10.1609/aaai.v34i01.5477 |
13 | WANG Y, ZHANG D X, LIU Y, et al. Enhancing transportation systems via deep learning: a survey [J]. Transportation Research Part C: Emerging Technologies, 2019, 99: 144-163. 10.1016/j.trc.2018.12.004 |
14 | GREKOUSIS G. Artificial neural networks and deep learning in urban geography: a systematic review and meta-analysis[J]. Computers, Environment and Urban Systems, 2019, 74: 244-256. 10.1016/j.compenvurbsys.2018.10.008 |
15 | WANG S Z, CAO J N, YU P S. Deep learning for spatio-temporal data mining: a survey [J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3681-3700. 10.1109/tkde.2020.3025580 |
16 | HOOKER J, DUVEILLER G, CESCATTI A. A global dataset of air temperature derived from satellite remote sensing and weather stations [J]. Scientific Data, 2018, 5: No.180246. 10.1038/sdata.2018.246 |
17 | ANDERSON V, LEUNG A C W, MEHDIPOOR H, et al. Technological opportunities for sensing of the health effects of weather and climate change: a state-of-the-art-review[J]. International Journal of Biometeorology, 2021, 65(6): 779-803. 10.1007/s00484-020-02063-z |
18 | 季长清,高志勇,秦静,等. 基于卷积神经网络的图像分类算法综述[J]. 计算机应用, 2022, 42(4):1044-1049. |
JI C Q, GAO Z Y, QIN J, et al. Review of image classification algorithms based on convolutional neural network[J]. Journal of Computer Applications, 2022, 42(4): 1044-1049. | |
19 | SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015,1: 802-810. |
20 | LIN H X, BAI R F, JIA W J, et al. Preserving dynamic attention for long-term spatial-temporal prediction[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 36-46. 10.1145/3394486.3403046 |
21 | KNUTSON T R, SIRUTIS J J, BENDER M A, et al. Dynamical downscaling projections of late twenty-first-century U.S. landfalling hurricane activity [J]. Climatic Change, 2022, 171(3/4): No.28. 10.1007/s10584-022-03346-7 |
22 | SETIADI D R I M. PSNR vs SSIM: imperceptibility quality assessment for image steganography[J]. Multimedia Tools and Applications, 2021, 80(6): 8423-8444. 10.1007/s11042-020-10035-z |
23 | BOCHINSKI E, SENST T, SIKORA T. Extending IOU based multi-object tracking by visual information [C]// Proceedings of the 15th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway: IEEE, 2018: 1-6. 10.1109/avss.2018.8639144 |
24 | CHEN H G, ZHANG X, LIU Y T, et al. Generative adversarial networks capabilities for super-resolution reconstruction of weather radar echo images [J]. Atmosphere, 2019, 10(9): No.555. 10.3390/atmos10090555 |
25 | YUAN H X, ZENG Q Y, HE J X. Weather radar image superresolution using a nonlocal residual network[J]. Journal of Mathematics, 2021, 2021: No.4483907. 10.1155/2021/4483907 |
26 | DOUKARI M, TOPOUZELIS K. Overcoming the UAS limitations in the coastal environment for accurate habitat mapping[J]. Remote Sensing Applications: Society and Environment, 2022, 26: No.100726. 10.1016/j.rsase.2022.100726 |
27 | DOUKARI M, BATSARIS M, TOPOUZELIS K. UASea: a data acquisition toolbox for improving marine habitat mapping[J]. Drones, 2021, 5(3): No.73. 10.3390/drones5030073 |
28 | SHAH M, KUMAR P. Improved handling of motion blur for grape detection after deblurring [C]// Proceedings of the 8th International Conference on Signal Processing and Integrated Networks. Piscataway: IEEE, 2021: 949-954. 10.1109/spin52536.2021.9566112 |
29 | KUMAR A, AHMAD M O, SWAMY M N S. An efficient denoising framework using weighted overlapping group sparsity[J]. Information Sciences, 2018, 454/455: 292-311. 10.1016/j.ins.2018.05.001 |
30 | LI D Q, JIANG T T, JIANG M. Unified quality assessment of in-the-wild videos with mixed datasets training[J]. International Journal of Computer Vision, 2021, 129(4): 1238-1257. 10.1007/s11263-020-01408-w |
31 | LIU W, ZHOU F, LU T, et al. Image defogging quality assessment: Real-world database and method[J]. IEEE Transactions on Image Processing, 2021, 30: 176-190. 10.1109/tip.2020.3033402 |
32 | YILDIRIM M, ÇINAR A, CENGIL E. Classification of the weather images with the proposed hybrid model using deep learning, SVM classifier, and mRMR feature selection methods[J]. Geocarto International, 2022, 37(9): 2735-2745. 10.1080/10106049.2022.2034989 |
33 | XIE K Z, HUANG L, ZHANG W F, et al. Learning to classify weather conditions from single images without labels[C]// Proceedings of the 2022 International Conference on Multimedia Modeling, LNCS 13141. Cham: Springer, 2022: 57-68. |
34 | MISHRA A, ROY G K, SINGLA K. Multi-class weather classification: comparative analysis of machine learning algorithms[M]// TIWARI S, TRIVEDI M C, KOLHE M L, et al. Advances in Data and Information Sciences: Proceedings of ICDIS 2021, LNNS 318. Singapore: Springer, 2022: 307-316. 10.1007/978-981-16-5689-7_27 |
35 | 郭志强,胡永武,刘鹏,等. 基于特征融合的室外天气图像分类[J]. 计算机应用, 2020, 40(4):1023-1029. 10.11772/j.issn.1001-9081.2019081449 |
GUO Z Q, HU Y W, LIU P, et al. Outdoor weather image classification based on feature fusion [J]. Journal of Computer Applications, 2020, 40(4):1023-1029. 10.11772/j.issn.1001-9081.2019081449 | |
36 | KHAN M N, AHMED M M. Weather and surface condition detection based on road-side webcams utilizing AlexNet, GoogleLeNet, and ResNet: application of pre-trained convolutional neural network [J]. International Journal of Transportation Science and Technology, 2022, 11(3): 468-483. 10.1016/j.ijtst.2021.06.003 |
37 | 吴昆, 梁伟, 王书强. 基于3D卷积神经网络的区域降雨量预报[J]. 图像与信号处理, 2018, 7(4): 200-212. |
WU K, LIANG W, WANG S Q. 3D convolutional neural network for regional precipitation nowcasting [J]. Journal of Image and Signal Processing, 2018, 7(4): 200-212. | |
38 | CASTILLO-BOTÓN C, CASILLAS-PÉREZ D, CASANOVA-MATEO C, et al. Machine learning regression and classification methods for fog events prediction[J]. Atmospheric Research, 2022, 272: No.106157. 10.1016/j.atmosres.2022.106157 |
39 | PRABHAT, RÜBEL O, BYNA S, et al. TECA: a parallel toolkit for extreme climate analysis[J]. Procedia Computer Science, 2012, 9: 866-876. 10.1016/j.procs.2012.04.093 |
40 | LIU Y J, RACAH E, PRABHAT, et al. Application of deep convolutional neural networks for detecting extreme weather in climate datasets [EB/OL]. (2016-05-04) [2022-08-31].. |
41 | ZHOU K H, ZHENG Y G, LI B, et al. Forecasting different types of convective weather: a deep learning approach [J]. Journal of Meteorological Research, 2019, 33(5): 797-809. 10.1007/s13351-019-8162-6 |
42 | 刘新伟,黄武斌,蒋盈沙,等. 基于LightGBM算法的强对流天气分类识别研究[J]. 高原气象, 2021, 40(4):909-918. 10.7522/j.issn.1000-0534.2020.00075 |
LIU X W, HUANG W B, JIANG Y S, et al. Study of the classified identification of the strong convective weathers based on the LightGBM algorithm[J]. Plateau Meteorology, 2021, 40(4):909-918. 10.7522/j.issn.1000-0534.2020.00075 | |
43 | WANG Y B, LONG M S, WANG J M, et al. PredRNN: recurrent neural networks for predictive learning using spatiotemporal LSTMs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 879-888. |
44 | WANG Y B, GAO Z F, LONG M S, et al. PredRNN++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 5123-5132. |
45 | WANG Y B, WU H X, ZHANG J J, et al. PredRNN: a recurrent neural network for spatiotemporal predictive learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 2208-2225. 10.1109/tpami.2022.3165153 |
46 | ZAMO M, BEL L, MESTRE O. Sequential aggregation of probabilistic forecasts — application to wind speed ensemble forecasts [J]. Journal of the Royal Statistical Society Series C: Applied Statistics, 2021, 70(1): 202-225. 10.1111/rssc.12455 |
47 | 黄兴友,马玉蓉,胡苏蔓. 基于深度学习的天气雷达回波序列外推及效果分析[J]. 气象学报, 2021, 79(5):817-827. 10.11676/qxxb2021.041 |
HUANG X Y, MA Y R, HU S M. Extrapolation and effect analysis of weather radar echo sequence based on deep learning[J]. Acta Meteorologica Sinica, 2021, 79(5):817-827. 10.11676/qxxb2021.041 | |
48 | LI W D, GAO X, HAO Z H, et al. Using deep learning for precipitation forecasting based on spatio-temporal information: a case study [J]. Climate Dynamics, 2022, 58(1/2): 443-457. 10.1007/s00382-021-05916-4 |
49 | GOROOH V A, ASANJAN A A, NGUYEN P, et al. Deep neural network high SpatioTemporal resolution Precipitation Estimation (Deep-STEP) using passive microwave and infrared data[J]. Journal of Hydrometeorology, 2022, 23(4): 597-617. 10.1175/jhm-d-21-0194.1 |
50 | 马景奕,刘维成,闫文君. 基于深度学习的气象要素预测方法[J]. 热带气象学报, 2021, 37(2):186-193. 10.16032/j.issn.1004-4965.2021.018 |
MA J Y, LIU W C, YAN W J. Meteorological elements forecasting method based on deep learning[J]. Journal of Tropical Meteorology, 2021, 37(2): 186-193. 10.16032/j.issn.1004-4965.2021.018 | |
51 | 张雪薇,韩震. 基于ConvGRU深度学习网络模型的海表面温度预测[J]. 大连海洋大学学报, 2022, 37(3):531-538. |
ZHANG X W, HAN Z. Prediction of sea surface temperature based on ConvGRU deep learning network model[J]. Journal of Dalian Ocean University, 2022, 37(3):531-538. | |
52 | 潘超,李润宇,蔡国伟,等. 基于属性约简重构的自校正卷积记忆风速预测[J/OL]. 中国电机工程学报 (2022-03-23) [2022-05-20]. . |
PAN C, LI R Y, CAI G W, et al. Wind speed prediction with self-tuning convolutional memory based on attribute reduction reconstruction [J/OL]. Proceedings of the CSEE (2022-03-23) [2022-05-20].. | |
53 | 修春波,苏欢,苏雪苗. 多通道长短期记忆卷积网络的风速预测[J]. 电力工程技术, 2022, 41(1):64-69. 10.12158/j.2096-3203.2022.01.009 |
XIU C B, SU H, SU X M. Wind speed prediction based on multi-channel long short-term memory convolution neural network[J]. Electric Power Engineering Technology, 2022, 41(1):64-69. 10.12158/j.2096-3203.2022.01.009 | |
54 | LI Y P, LANG J W, JI L, et al. Weather forecasting using ensemble of spatial-temporal attention network and multi-layer perceptron[J]. Asia-Pacific Journal of Atmospheric Sciences, 2021, 57(3): 533-546. 10.1007/s13143-020-00212-3 |
55 | WANG C, WANG P, WANG D, et al. Nowcasting multicell short-term intense precipitation using graph models and random forests[J]. Monthly Weather Review, 2020, 148(11): 4453-4466. 10.1175/mwr-d-20-0050.1 |
56 | PETERSON M, RUDLOSKY S, ZHANG D L. Thunderstorm cloud-type classification from space-based lightning imagers[J]. Monthly Weather Review, 2020, 148(5): 1891-1898. 10.1175/mwr-d-19-0365.1 |
57 | 张永宏,刘昊,田伟,等. 基于DeepLab v3的西藏地区降雨云团分割方法[J]. 计算机应用, 2020, 40(9):2781-2788. |
ZHANG Y H, LIU H, TIAN W, et al. Rainfall cloud segmentation method in Tibet based on DeepLab v3[J]. Journal of Computer Applications, 2020, 40(9): 2781-2788. | |
58 | MUDIGONDA M, RAM P, KASHINATH K, et al. Deep learning for detecting extreme weather patterns[M]// CAMPS-VALLS G, TUIA D, ZHU X X, et al. Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science, and Geosciences. Hoboken, NJ: John Wiley & Sons, Inc., 2021: 161-185. 10.1002/9781119646181.ch12 |
59 | TONG B, SUN X F, FU J Y, et al. Identification of tropical cyclones via deep convolutional neural network based on satellite cloud images [J]. Atmospheric Measurement Techniques, 2022, 15(6): 1829-1848. 10.5194/amt-15-1829-2022 |
60 | 耿逍懿,郝坤,史振威. 一种基于深度学习的热带气旋路径集成预报方法[J]. 海洋科学, 2022, 46(2):74-86. |
GENG X Y, HAO K, SHI Z W. Consensus forecast method for a tropical cyclone track based on deep learning [J]. Marine Sciences, 2022, 46(2):74-86. | |
61 | NA Y S, NA B, SON S. Near real-time predictions of tropical cyclone trajectory and intensity in the northwestern Pacific Ocean using echo state network [J]. Climate Dynamics, 2022, 58(3/4): 651-667. 10.1007/s00382-021-05927-1 |
62 | CHEN R, ZHANG W M, WANG X. Machine learning in tropical cyclone forecast modeling: a review[J]. Atmosphere, 2020, 11(7): No.676. 10.3390/atmos11070676 |
63 | 钱奇峰,王川,徐雅静,等. 一种基于深度学习的台风强度估测技术[J]. 气象, 2021, 47(5):601-608. 10.7519/j.issn.1000-0526.2021.05.008 |
QIAN Q F, WANG C, XU Y J, et al. A deep learning technique of typhoon intensity estimation [J]. Meteorological Monthly, 2021, 47(5): 601-608. 10.7519/j.issn.1000-0526.2021.05.008 | |
64 | 陈睿. 基于深度学习的台风预测关键技术研究[D]. 长沙:国防科技大学, 2018: 56-71. |
CHEN R. Research on the key technology of typhoon prediction based on deep learning[D]. Changsha: National University of Defense Technology, 2018: 56-71. | |
65 | 孙健,曹卓,李恒,等. 人工智能技术在数值天气预报中的应用[J]. 应用气象学报, 2021, 32(1):1-11. 10.11898/1001-7313.20210101 |
SUN J, CAO Z, LI H, et al. Application of artificial intelligence technology to numerical weather prediction [J]. Journal of Applied Meteorological Science, 2021, 32(1):1-11. 10.11898/1001-7313.20210101 | |
66 | RUNGE J, PETOUKHOV V, DONGES J F, et al. Identifying causal gateways and mediators in complex spatio-temporal systems[J]. Nature Communications, 2015, 6: No.8502. 10.1038/ncomms9502 |
67 | FRNDA J, DURICA M, NEDOMA J, et al. A weather forecast model accuracy analysis and ECMWF enhancement proposal by neural network [J]. Sensors, 2019, 19(23): No.5144. 10.3390/s19235144 |
68 | ZHUO J Y, TAN Z M. Physics-augmented deep learning to improve tropical cyclone intensity and size estimation from satellite imagery[J]. Monthly Weather Review, 2021, 149(7): 2097-2113. |
69 | CHEN Z H, GAO J, WANG W K, et al. Physics-informed generative neural network: an application to troposphere temperature prediction[J]. Environmental Research Letters, 2021, 16(6): No.065003. 10.1088/1748-9326/abfde9 |
70 | XIE H S, WU L D, XIE W, et al. Improving ECMWF short-term intensive rainfall forecasts using generative adversarial nets and deep belief networks[J]. Atmospheric Research, 2021, 249: No.105281. 10.1016/j.atmosres.2020.105281 |
71 | RASP S, PRITCHARD M S, GENTINE P. Deep learning to represent subgrid processes in climate models [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(39): 9684-9689. 10.1073/pnas.1810286115 |
72 | WANG X, HAN Y, XUE W, et al. Stable climate simulations using a realistic GCM with neural network parameterizations for atmospheric moist physics and radiation processes[J]. Geoscientific Model Development, 2022, 15(9): 3923-3940. 10.5194/gmd-15-3923-2022 |
73 | PENG X D, CHE Y Z, CHANG J. A novel approach to improve numerical weather prediction skills by using anomaly integration and historical data[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(16): 8814-8826. 10.1002/jgrd.50682 |
74 | HAN L, CHEN M X, CHEN K K, et al. A deep learning method for bias correction of ECMWF 24-240 h forecasts [J]. Advances in Atmospheric Sciences, 2021, 38(9): 1444-1459. 10.1007/s00376-021-0215-y |
75 | 张延彪,陈明轩,韩雷,等. 数值天气预报多要素深度学习融合订正方法[J]. 气象学报, 2022, 80(1):153-167. 10.11676/qxxb2021.066 |
ZHANG Y B, CHEN M X, HAN L, et al. Multi-element deep learning fusion correction method for numerical weather prediction[J]. Acta Meteorologica Sinica, 2022, 80(1):153-167. 10.11676/qxxb2021.066 | |
76 | SAYEED A, CHOI Y, JUNG J, et al. A deep convolutional neural network model for improving WRF simulations [J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(2): 750-760. 10.1109/tnnls.2021.3100902 |
77 | SHA Y K, GAGNE D J, Ⅱ, WEST G, et al. A hybrid analog-ensemble, convolutional-neural-network method for post-processing precipitation forecasts [J]. Monthly Weather Review, 2022, 150(6): 1495-1515. |
78 | WANG F, TIAN D. On deep learning-based bias correction and downscaling of multiple climate models simulations [J]. Climate Dynamics, 2022, 59(11/12): 3451-3468. 10.1007/s00382-022-06277-2 |
79 | CHO D, YOO C, SON B, et al. A novel ensemble learning for post-processing of NWP model’s next-day maximum air temperature forecast in summer using deep learning and statistical approaches[J]. Weather and Climate Extremes, 2022, 35: No.100410. 10.1016/j.wace.2022.100410 |
80 | SCHER S. Toward data-driven weather and climate forecasting: Approximating a simple general circulation model with deep learning[J]. Geophysical Research Letters, 2018, 45(22): 12616-12622. 10.1029/2018gl080704 |
81 | DE BÉZENAC E, PAJOT A, GALLINARI P. Deep learning for physical processes: incorporating prior scientific knowledge [J]. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019(12): No.124009. 10.1088/1742-5468/ab3195 |
82 | WEBER T, COROTAN A, HUTCHINSON B, et al. Technical note: deep learning for creating surrogate models of precipitation in Earth system models [J]. Atmospheric Chemistry and Physics, 2020, 20(4): 2303-2317. 10.5194/acp-20-2303-2020 |
83 | XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5987-5995. 10.1109/cvpr.2017.634 |
84 | HUANG G, LIU S C, van der MAATEN L, et al. CondenseNet: an efficient DenseNet using learned group convolutions[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2752-2761. 10.1109/cvpr.2018.00291 |
85 | ZHANG Z Y, LI J Y, SHAO W Q, et al. Differentiable learning-to-group channels via Groupable convolutional neural networks[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3541-3550. 10.1109/iccv.2019.00364 |
86 | WANG X J, KAN M N, SHAN S G, et al. Fully learnable group convolution for acceleration of deep neural networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9041-9050. 10.1109/cvpr.2019.00926 |
87 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. |
88 | BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. (2018-04-19) [2022-08-31].. |
89 | YAN J N, MU L, WANG L Z, et al. Temporal convolutional networks for the advance prediction of ENSO[J]. Scientific Reports, 2020, 10: No.8055. 10.1038/s41598-020-65070-5 |
90 | HEWAGE P, TROVATI M, PEREIRA E, et al. Deep learning-based effective fine-grained weather forecasting model [J]. Pattern Analysis and Applications, 2021, 24(1): 343-366. 10.1007/s10044-020-00898-1 |
91 | 雷霞, 罗雄麟. 深度学习可解释性研究综述[J]. 计算机应用, 2022, 42(11): 3588-3602. |
LEI X, LUO X L. Review on interpretability of deep learning[J]. Journal of Computer Applications, 2022, 42(11): 3588-3602. | |
92 | MANANDHAR S, DEV S, LEE Y H, et al. A data-driven approach to detect precipitation from meteorological sensor data[C]// Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2018: 3872-3875. 10.1109/igarss.2018.8519275 |
93 | GAGNE D J, Ⅱ, HAUPT S E, NYCHKA D W, et al. Interpretable deep learning for spatial analysis of severe hailstorms[J]. Monthly Weather Review, 2019, 147(8): 2827-2845. 10.1175/mwr-d-18-0316.1 |
94 | TOMS B A, BARNES E A, EBERT-UPHOFF I. Physically interpretable neural networks for the geosciences: applications to earth system variability[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(9): No.e2019MS002002. 10.1029/2019ms002002 |
95 | YUAN Y, LIN L, HUO L Z, et al. Using an attention-based LSTM encoder-decoder network for near real-time disturbance detection [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1819-1832. 10.1109/jstars.2020.2988324 |
96 | CHAKRABORTY T, LEE X. Creating bias-corrected global radiation datasets from climate reanalysis products using supervised learning [C]// Proceedings of the 19th Conference on Artificial Intelligence for Environmental Science. Providence, RI: American Meteorological Society, 2020: No.367892. 10.1038/s41597-021-01016-4 |
97 | PEYRON M, FILLION A, GÜROL S, et al. Latent space data assimilation by using deep learning [J]. Quarterly Journal of the Royal Meteorological Society, 2021, 147(740): 3759-3777. 10.1002/qj.4153 |
98 | WANG Y Y, SHI X M, LEI L L, et al. Deep learning augmented data assimilation: reconstructing missing information with convolutional autoencoders [J]. Monthly Weather Review, 2022, 150(8): 1977-1991. 10.1175/mwr-d-21-0288.1 |
[1] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
[2] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[3] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. |
[4] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[5] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[6] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
[7] | 顾焰杰, 张英俊, 刘晓倩, 周围, 孙威. 基于时空多图融合的交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2618-2625. |
[8] | 石乾宏, 杨燕, 江永全, 欧阳小草, 范武波, 陈强, 姜涛, 李媛. 面向空气质量预测的多粒度突变拟合网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2643-2650. |
[9] | 吴筝, 程志友, 汪真天, 汪传建, 王胜, 许辉. 基于深度学习的患者麻醉复苏过程中的头部运动幅度分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2258-2263. |
[10] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
[11] | 张郅, 李欣, 叶乃夫, 胡凯茜. 基于暗知识保护的模型窃取防御技术DKP[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2080-2086. |
[12] | 赵亦群, 张志禹, 董雪. 基于密集残差物理信息神经网络的各向异性旅行时计算方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2310-2318. |
[13] | 徐松, 张文博, 王一帆. 基于时空信息的轻量视频显著性目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2192-2199. |
[14] | 孙逊, 冯睿锋, 陈彦如. 基于深度与实例分割融合的单目3D目标检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2208-2215. |
[15] | 刘源泂, 何茂征, 黄益斌, 钱程. 基于ResNet50和改进注意力机制的船舶识别模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1935-1941. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||