《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (6): 1950-1957.DOI: 10.11772/j.issn.1001-9081.2022050773
所属专题: 多媒体计算与计算机仿真
靳鑫1,2, 刘仰川2, 朱叶晨2, 张子健3, 高欣1,2()
Xin JIN1,2, Yangchuan LIU2, Yechen ZHU2, Zijian ZHANG3, Xin GAO1,2()
摘要:
稀疏投影可有效缩短锥束CT(CBCT)扫描剂量和扫描时间,但会导致重建图像中出现大量条状伪影。正弦图修复可以生成缺失角度的投影数据,并提高重建图像质量。基于这些,提出了一种用于稀疏角度CBCT重建的正弦图修复的残差编解码-生成对抗网络(RED-GAN)。该网络利用残差编解码结构(RED)模块替换Pix2pixGAN(Pix2pix Generative Adversarial Network)中的U-Net生成器,并利用基于PatchGAN(Patch Generative Adversarial Network)的条件判别器鉴别修复后的正弦图和真实正弦图,从而进一步提升网络性能。利用真实CBCT投影数据进行网络训练后,分别在1/2、1/3、1/4稀疏采样条件下测试所提网络,并把RED-GAN与线性插值法、残差编解码-卷积神经网络(RED-CNN)和Pix2pixGAN对比。实验结果表明,RED-GAN的正弦图修复结果在3种条件下均优于对比方法,并在1/4稀疏采样条件下所提网络的优势最为明显。在正弦图域中,RED-GAN的均方根误差(RMSE)下降了7.2%,峰值信噪比(PSNR)上升了1.5%,结构相似性(SSIM)上升了1.4%;在重建图像域中,RMSE下降了5.4%,PSNR上升了1.6%,SSIM上升了1.0%。可见,RED-GAN适用于高质量的稀疏角度CBCT重建,在快速低剂量CBCT扫描领域具有潜在的应用价值。
中图分类号: