《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (7): 2248-2254.DOI: 10.11772/j.issn.1001-9081.2022060812
收稿日期:
2022-06-06
修回日期:
2022-08-29
接受日期:
2022-09-01
发布日期:
2023-07-20
出版日期:
2023-07-10
通讯作者:
林剑
作者简介:
林剑(1983—),男,浙江温州人,教授,博士,CCF会员,主要研究方向:调度、智能计算、智慧物流;基金资助:
Jian LIN1(), Jingxuan YE1, Wenwen LIU1,2, Xiaowen SHAO1,3
Received:
2022-06-06
Revised:
2022-08-29
Accepted:
2022-09-01
Online:
2023-07-20
Published:
2023-07-10
Contact:
Jian LIN
About author:
LIN Jian, born in 1983, Ph. D., professor. His research interests include scheduling, intelligent computation, intelligent logistics.Supported by:
摘要:
针对带容量约束车辆路径问题(CVRP)中交通拥堵、资源供给、客户需求等不确定性因素的影响容易导致单一最优解不可行或非最优的问题,提出一种多模态差分进化(MDE)算法,以同时求解得到目标值相近的多个备选车辆路径方案。首先结合CVRP的特点,构建高效的解个体编解码策略,并基于修复机制提升解个体的质量;然后在差分进化(DE)算法框架下,基于多模态优化视角引入动态半径小生境生成方法,并采用杰卡德系数来度量解个体之间相似性,进而实现对于解个体之间距离的计算;最后,改进邻域搜索策略,采用精英存档和更新策略来得到多模态最优解集。基于典型数据集的仿真实验与分析结果表明,所提MDE算法寻优得到的平均最优解个数达到1.743 4个,平均最优解与已知最优解的平均偏差为0.03%,而差分进化(DE)算法二者分别为0.8486和0.63%。可见,所提算法在求解CVRP上表现出较高的有效性和稳定性,能同时得到CVRP的多个近似最优解。
中图分类号:
林剑, 叶璟轩, 刘雯雯, 邵晓雯. 求解带容量约束车辆路径问题的多模态差分进化算法[J]. 计算机应用, 2023, 43(7): 2248-2254.
Jian LIN, Jingxuan YE, Wenwen LIU, Xiaowen SHAO. Multimodal differential evolution algorithm for solving capacitated vehicle routing problem[J]. Journal of Computer Applications, 2023, 43(7): 2248-2254.
实例 | 真实值 | MDE | ||
---|---|---|---|---|
Best | Num | Best | Num | |
n5-k2-1 | 250 | 4 | 250 | 4 |
n5-k2-2 | 752 | 4 | 752 | 4 |
n5-k2-3 | 747 | 4 | 747 | 4 |
n5-k2-4 | 1 706 | 2 | 1 706 | 2 |
n5-k2-5 | 540 | 2 | 540 | 2 |
n6-k2-1 | 1 239 | 2 | 1 239 | 2 |
n6-k2-2 | 1 205 | 4 | 1 205 | 4 |
n6-k2-3 | 2 230 | 2 | 2 230 | 2 |
n6-k2-4 | 2 400 | 2 | 2 400 | 2 |
n6-k2-5 | 854 | 2 | 854 | 2 |
表1 MDE算法的求解结果与真实值比较
Tab. 1 Comparison of results obtained by MDE algorithm and real values
实例 | 真实值 | MDE | ||
---|---|---|---|---|
Best | Num | Best | Num | |
n5-k2-1 | 250 | 4 | 250 | 4 |
n5-k2-2 | 752 | 4 | 752 | 4 |
n5-k2-3 | 747 | 4 | 747 | 4 |
n5-k2-4 | 1 706 | 2 | 1 706 | 2 |
n5-k2-5 | 540 | 2 | 540 | 2 |
n6-k2-1 | 1 239 | 2 | 1 239 | 2 |
n6-k2-2 | 1 205 | 4 | 1 205 | 4 |
n6-k2-3 | 2 230 | 2 | 2 230 | 2 |
n6-k2-4 | 2 400 | 2 | 2 400 | 2 |
n6-k2-5 | 854 | 2 | 854 | 2 |
实例集 | 实例 | Best | Num | MDE | DE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Avg | Dev | MaxNum | MinNum | AvgNum | Avg | Dev | MaxNum | MinNum | AvgNum | ||||
A | A-n32-k5 | 784 | 5 | 784.0 | 0.00 | 3 | 1 | 2.4 | 784.0 | 0.00 | 3 | 1 | 2.0 |
A-n33-k5 | 661 | 6 | 661.0 | 0.00 | 4 | 2 | 3.4 | 661.0 | 0.00 | 3 | 1 | 1.8 | |
A-n33-k6 | 742 | 6 | 742.0 | 0.00 | 4 | 1 | 2.2 | 742.0 | 0.00 | 5 | 1 | 2.0 | |
A-n34-k5 | 778 | 5 | 778.0 | 0.00 | 2 | 1 | 1.4 | 782.6 | 0.59 | 1 | 0 | 0.4 | |
A-n36-k5 | 799 | 5 | 799.0 | 0.00 | 3 | 1 | 1.8 | 812.4 | 1.68 | 0 | 0 | 0.0 | |
A-n37-k5 | 669 | 5 | 669.0 | 0.00 | 3 | 2 | 2.8 | 670.8 | 0.27 | 3 | 0 | 1.8 | |
A-n37-k6 | 949 | 3 | 949.6 | 0.06 | 1 | 0 | 1.0 | 963.0 | 1.48 | 1 | 0 | 0.2 | |
A-n38-k5 | 730 | 5 | 730.2 | 0.03 | 4 | 0 | 2.0 | 739.2 | 1.26 | 1 | 0 | 0.2 | |
A-n39-k5 | 822 | 4 | 822.6 | 0.07 | 1 | 0 | 1.0 | 827.4 | 0.66 | 0 | 0 | 0.0 | |
A-n39-k6 | 831 | 3 | 831.8 | 0.10 | 2 | 0 | 1.2 | 833.0 | 0.24 | 2 | 0 | 0.4 | |
A-n44-k6 | 937 | 3 | 939.6 | 0.28 | 2 | 0 | 1.2 | 959.0 | 2.35 | 0 | 0 | 0.0 | |
A-n45-k7 | 1 146 | 5 | 1 146.0 | 0.00 | 3 | 2 | 2.2 | 1 147.2 | 0.10 | 1 | 0 | 0.8 | |
A-n46-k7 | 914 | 5 | 914.0 | 0.00 | 2 | 1 | 1.4 | 914.0 | 0.00 | 1 | 1 | 1.0 | |
A-n48-k7 | 1 073 | 5 | 1 073.0 | 0.00 | 3 | 1 | 2.0 | 1 075.6 | 0.24 | 2 | 0 | 1.0 | |
A-n54-k7 | 1 167 | 5 | 1 167.0 | 0.00 | 2 | 1 | 1.2 | 1 203.0 | 3.08 | 0 | 0 | 0.0 | |
A-n55-k9 | 1 073 | 4 | 1 073.4 | 0.04 | 2 | 1 | 1.4 | 1 077.2 | 0.39 | 1 | 0 | 0.2 | |
B | B-n31-k5 | 672 | 3 | 672.8 | 0.12 | 1 | 0 | 0.6 | 674.8 | 0.42 | 0 | 0 | 0.0 |
B-n34-k5 | 788 | 5 | 788.0 | 0.00 | 4 | 2 | 4.0 | 788.0 | 0.00 | 2 | 1 | 1.2 | |
B-n35-k5 | 955 | 5 | 955.0 | 0.00 | 2 | 1 | 1.0 | 955.0 | 0.00 | 1 | 1 | 1.0 | |
B-n38-k6 | 781 | 4 | 781.0 | 0.00 | 2 | 1 | 1.3 | 781.4 | 0.05 | 1 | 0 | 0.6 | |
B-n39-k5 | 549 | 5 | 549.0 | 0.00 | 1 | 1 | 1.0 | 549.6 | 0.11 | 1 | 0 | 0.6 | |
B-n43-k6 | 742 | 5 | 742.0 | 0.00 | 2 | 1 | 1.3 | 744.0 | 0.27 | 2 | 0 | 0.4 | |
B-n44-k7 | 909 | 5 | 909.0 | 0.00 | 2 | 1 | 1.5 | 917.0 | 0.88 | 0 | 0 | 0.0 | |
B-n45-k5 | 751 | 2 | 754.0 | 0.40 | 1 | 0 | 0.2 | 762.2 | 1.49 | 0 | 0 | 0.0 | |
B-n50-k7 | 741 | 5 | 741.0 | 0.00 | 5 | 2 | 3.8 | 741.0 | 0.00 | 5 | 2 | 2.8 | |
B-n52-k7 | 747 | 5 | 747.0 | 0.00 | 4 | 2 | 3.0 | 747.4 | 0.05 | 2 | 0 | 0.8 | |
P | P-n16-k8 | 450 | 5 | 450.0 | 0.00 | 5 | 2 | 2.6 | 450.0 | 0.00 | 3 | 2 | 2.4 |
P-n19-k2 | 201 | 4 | 201.0 | 0.00 | 1 | 1 | 1.0 | 209.4 | 4.18 | 1 | 0 | 0.2 | |
P-n20-k2 | 216 | 5 | 216.0 | 0.00 | 3 | 2 | 2.2 | 216.0 | 0.00 | 2 | 1 | 1.8 | |
P-n21-k2 | 211 | 5 | 211.0 | 0.00 | 1 | 1 | 1.0 | 211.0 | 0.00 | 1 | 1 | 1.0 | |
P-n22-k2 | 216 | 5 | 216.0 | 0.00 | 2 | 1 | 1.4 | 218.4 | 1.11 | 1 | 0 | 0.6 | |
P-n22-k8 | 603 | 5 | 603.0 | 0.00 | 3 | 2 | 2.6 | 603.0 | 0.00 | 5 | 2 | 3.2 | |
P-n23-k8 | 529 | 5 | 529.0 | 0.00 | 2 | 1 | 1.4 | 532.2 | 0.60 | 1 | 0 | 0.8 | |
P-n40-k5 | 458 | 5 | 458.0 | 0.00 | 2 | 1 | 1.2 | 458.0 | 0.00 | 2 | 1 | 1.2 | |
P-n45-k5 | 510 | 5 | 510.0 | 0.00 | 2 | 2 | 2.0 | 512.6 | 0.51 | 1 | 0 | 0.4 | |
P-n50-k7 | 554 | 5 | 554.0 | 0.00 | 2 | 1 | 1.6 | 555.8 | 0.32 | 1 | 0 | 0.4 | |
P-n55-k7 | 568 | 3 | 568.6 | 0.11 | 2 | 1 | 1.4 | 573.2 | 0.92 | 1 | 0 | 0.2 |
表2 不同算法在实例集A、B、P上的运行结果
Tab. 2 Running results of different algorithms on instance set A, B and P
实例集 | 实例 | Best | Num | MDE | DE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Avg | Dev | MaxNum | MinNum | AvgNum | Avg | Dev | MaxNum | MinNum | AvgNum | ||||
A | A-n32-k5 | 784 | 5 | 784.0 | 0.00 | 3 | 1 | 2.4 | 784.0 | 0.00 | 3 | 1 | 2.0 |
A-n33-k5 | 661 | 6 | 661.0 | 0.00 | 4 | 2 | 3.4 | 661.0 | 0.00 | 3 | 1 | 1.8 | |
A-n33-k6 | 742 | 6 | 742.0 | 0.00 | 4 | 1 | 2.2 | 742.0 | 0.00 | 5 | 1 | 2.0 | |
A-n34-k5 | 778 | 5 | 778.0 | 0.00 | 2 | 1 | 1.4 | 782.6 | 0.59 | 1 | 0 | 0.4 | |
A-n36-k5 | 799 | 5 | 799.0 | 0.00 | 3 | 1 | 1.8 | 812.4 | 1.68 | 0 | 0 | 0.0 | |
A-n37-k5 | 669 | 5 | 669.0 | 0.00 | 3 | 2 | 2.8 | 670.8 | 0.27 | 3 | 0 | 1.8 | |
A-n37-k6 | 949 | 3 | 949.6 | 0.06 | 1 | 0 | 1.0 | 963.0 | 1.48 | 1 | 0 | 0.2 | |
A-n38-k5 | 730 | 5 | 730.2 | 0.03 | 4 | 0 | 2.0 | 739.2 | 1.26 | 1 | 0 | 0.2 | |
A-n39-k5 | 822 | 4 | 822.6 | 0.07 | 1 | 0 | 1.0 | 827.4 | 0.66 | 0 | 0 | 0.0 | |
A-n39-k6 | 831 | 3 | 831.8 | 0.10 | 2 | 0 | 1.2 | 833.0 | 0.24 | 2 | 0 | 0.4 | |
A-n44-k6 | 937 | 3 | 939.6 | 0.28 | 2 | 0 | 1.2 | 959.0 | 2.35 | 0 | 0 | 0.0 | |
A-n45-k7 | 1 146 | 5 | 1 146.0 | 0.00 | 3 | 2 | 2.2 | 1 147.2 | 0.10 | 1 | 0 | 0.8 | |
A-n46-k7 | 914 | 5 | 914.0 | 0.00 | 2 | 1 | 1.4 | 914.0 | 0.00 | 1 | 1 | 1.0 | |
A-n48-k7 | 1 073 | 5 | 1 073.0 | 0.00 | 3 | 1 | 2.0 | 1 075.6 | 0.24 | 2 | 0 | 1.0 | |
A-n54-k7 | 1 167 | 5 | 1 167.0 | 0.00 | 2 | 1 | 1.2 | 1 203.0 | 3.08 | 0 | 0 | 0.0 | |
A-n55-k9 | 1 073 | 4 | 1 073.4 | 0.04 | 2 | 1 | 1.4 | 1 077.2 | 0.39 | 1 | 0 | 0.2 | |
B | B-n31-k5 | 672 | 3 | 672.8 | 0.12 | 1 | 0 | 0.6 | 674.8 | 0.42 | 0 | 0 | 0.0 |
B-n34-k5 | 788 | 5 | 788.0 | 0.00 | 4 | 2 | 4.0 | 788.0 | 0.00 | 2 | 1 | 1.2 | |
B-n35-k5 | 955 | 5 | 955.0 | 0.00 | 2 | 1 | 1.0 | 955.0 | 0.00 | 1 | 1 | 1.0 | |
B-n38-k6 | 781 | 4 | 781.0 | 0.00 | 2 | 1 | 1.3 | 781.4 | 0.05 | 1 | 0 | 0.6 | |
B-n39-k5 | 549 | 5 | 549.0 | 0.00 | 1 | 1 | 1.0 | 549.6 | 0.11 | 1 | 0 | 0.6 | |
B-n43-k6 | 742 | 5 | 742.0 | 0.00 | 2 | 1 | 1.3 | 744.0 | 0.27 | 2 | 0 | 0.4 | |
B-n44-k7 | 909 | 5 | 909.0 | 0.00 | 2 | 1 | 1.5 | 917.0 | 0.88 | 0 | 0 | 0.0 | |
B-n45-k5 | 751 | 2 | 754.0 | 0.40 | 1 | 0 | 0.2 | 762.2 | 1.49 | 0 | 0 | 0.0 | |
B-n50-k7 | 741 | 5 | 741.0 | 0.00 | 5 | 2 | 3.8 | 741.0 | 0.00 | 5 | 2 | 2.8 | |
B-n52-k7 | 747 | 5 | 747.0 | 0.00 | 4 | 2 | 3.0 | 747.4 | 0.05 | 2 | 0 | 0.8 | |
P | P-n16-k8 | 450 | 5 | 450.0 | 0.00 | 5 | 2 | 2.6 | 450.0 | 0.00 | 3 | 2 | 2.4 |
P-n19-k2 | 201 | 4 | 201.0 | 0.00 | 1 | 1 | 1.0 | 209.4 | 4.18 | 1 | 0 | 0.2 | |
P-n20-k2 | 216 | 5 | 216.0 | 0.00 | 3 | 2 | 2.2 | 216.0 | 0.00 | 2 | 1 | 1.8 | |
P-n21-k2 | 211 | 5 | 211.0 | 0.00 | 1 | 1 | 1.0 | 211.0 | 0.00 | 1 | 1 | 1.0 | |
P-n22-k2 | 216 | 5 | 216.0 | 0.00 | 2 | 1 | 1.4 | 218.4 | 1.11 | 1 | 0 | 0.6 | |
P-n22-k8 | 603 | 5 | 603.0 | 0.00 | 3 | 2 | 2.6 | 603.0 | 0.00 | 5 | 2 | 3.2 | |
P-n23-k8 | 529 | 5 | 529.0 | 0.00 | 2 | 1 | 1.4 | 532.2 | 0.60 | 1 | 0 | 0.8 | |
P-n40-k5 | 458 | 5 | 458.0 | 0.00 | 2 | 1 | 1.2 | 458.0 | 0.00 | 2 | 1 | 1.2 | |
P-n45-k5 | 510 | 5 | 510.0 | 0.00 | 2 | 2 | 2.0 | 512.6 | 0.51 | 1 | 0 | 0.4 | |
P-n50-k7 | 554 | 5 | 554.0 | 0.00 | 2 | 1 | 1.6 | 555.8 | 0.32 | 1 | 0 | 0.4 | |
P-n55-k7 | 568 | 3 | 568.6 | 0.11 | 2 | 1 | 1.4 | 573.2 | 0.92 | 1 | 0 | 0.2 |
1 | DANTZIG G B, RAMSER J H. The truck dispatching problem[J]. Management Science, 1959, 6(1): 80-91. 10.1287/mnsc.6.1.80 |
2 | PESSOA A A, POSS M, SADYKOV R, et al. Branch-cut-and-price for the robust capacitated vehicle routing problem with knapsack uncertainty[J]. Operations Research, 2021, 69(3): 739-754. 10.1287/opre.2020.2035 |
3 | CHEN A L, YANG G K, WU Z M. Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem[J]. Journal of Zhejiang University — SCIENCE A, 2006, 7(4): 607-614. 10.1631/jzus.2006.a0607 |
4 | ALESIANI F, ERMIS G, GKIOTSALITIS K. Constrained Clustering for the Capacitated Vehicle Routing Problem (CC-CVRP) [J]. Applied Artificial Intelligence, 2022, 36(1): No.1995658. 10.1080/08839514.2021.1995658 |
5 | 孙华丽,谢剑英.基于暂态混沌神经网络的多车调度混合优化算法[J].控制与决策, 2007, 22(1): 105-108, 112. 10.3321/j.issn:1001-0920.2007.01.023 |
SUN H L, XIE J Y. Hybrid TCNN optimization algorithm for capacity vehicle routing problem[J]. Control and Decision, 2007, 22(1): 105-108, 112. 10.3321/j.issn:1001-0920.2007.01.023 | |
6 | 姜昌华,戴树贵,胡幼华.求解车辆路径问题的混合遗传算法[J].计算机集成制造系统, 2007, 13(10): 2047-2052. 10.3969/j.issn.1006-5911.2007.10.027 |
JIANG C H, DAI S G, HU Y H. Hybrid genetic algorithm for capacitated vehicle routing problem[J]. Computer Integrated Manufacturing Systems, 2007, 13(10): 2047-2052. 10.3969/j.issn.1006-5911.2007.10.027 | |
7 | 张晓楠,范厚明.混合分散搜索算法求解带容量约束车辆路径问题[J].控制与决策, 2015, 30(11): 1937-1944. 10.12011/1000-6788(2015)5-1202 |
ZHANG X N, FAN H M. Hybrid scatter search algorithm for capacitated vehicle routing problem[J]. Control and Decision, 2015, 30(11): 1937-1944. 10.12011/1000-6788(2015)5-1202 | |
8 | 曹高立,胡蓉,钱斌,等.一种有效混合量子进化算法求解带容量约束的车辆路径优化问题[J].计算机集成制造系统, 2015, 21(4): 1101-1113. 10.13196/j.cims.2015.04.025 |
CAO G L, HU R, QIAN B, et al. Effective hybrid quantum evolutionary algorithm for capacitated vehicle problem[J]. Computer Integrated Manufacturing Systems, 2015, 21(4): 1101-1113. 10.13196/j.cims.2015.04.025 | |
9 | AKPINAR S. Hybrid large neighbourhood search algorithm for capacitated vehicle routing problem[J]. Expert Systems with Applications, 2016, 61: 28-38. 10.1016/j.eswa.2016.05.023 |
10 | 李阳,范厚明,张晓楠,等.随机需求车辆路径问题及混合变邻域分散搜索算法求解[J].控制理论与应用, 2017, 34(12): 1594-1604. 10.7641/CTA.2017.60888 |
LI Y, FAN H M, ZHANG X N, et al. Two-phase variable neighborhood scatter search for the capacitated vehicle routing problem with stochastic demand[J]. Control Theory and Applications, 2017, 34(12): 1594-1604. 10.7641/CTA.2017.60888 | |
11 | 李阳,范厚明.求解带容量约束车辆路径问题的混合变邻域生物共栖搜索算法[J].控制与决策, 2018, 33(7): 1190-1198. 10.13195/j.kzyjc.2017.0346 |
LI Y, FAN H M. Hybrid variable neighborhood symbiotic organisms search for capacitated vehicle routing problem[J]. Control and Decision, 2018, 33(7): 1190-1198. 10.13195/j.kzyjc.2017.0346 | |
12 | 黄戈文,蔡延光,戚远航,等.自适应遗传灰狼优化算法求解带容量约束的车辆路径问题[J].电子学报, 2019, 47(12): 2602-2610. |
HUANG G W, CAI Y G, QI Y H, et al. Adaptive genetic grey wolf optimizer algorithm for capacitated vehicle routing problem[J]. Acta Electronica Sinica, 2019, 47(12): 2602-2610. | |
13 | ALTABEEB A M, MOHSEN A M, GHALLAB A. An improved hybrid firefly algorithm for capacitated vehicle routing problem[J]. Applied Soft Computing, 2019, 84: No.105728. 10.1016/j.asoc.2019.105728 |
14 | 张景玲,冯勤炳,赵燕伟,等.基于强化学习的超启发算法求解有容量车辆路径问题[J].计算机集成制造系统, 2020, 26(4): 1118-1129. 10.13196/j.cims.2020.07.019 |
ZHANG J L, FENG Q B, ZHAO Y W, et al. Hyper-heuristic for CVRP with reinforcement learning[J]. Computer Integrated Manufacturing Systems, 2020, 26(4): 1118-1129. 10.13196/j.cims.2020.07.019 | |
15 | 李华峰,黄樟灿,张蔷,等.求解需求可拆分车辆路径问题的改进的金字塔演化策略[J].计算机应用, 2021, 41(1): 300-306. 10.11772/j.issn.1001-9081.2020050615 |
LI H F, HUANG Z C, ZHANG Q, et al. Improved pyramid evolution strategy for solving split delivery vehicle routing problem[J]. Journal of Computer Applications, 2021, 41(1): 300-306. 10.11772/j.issn.1001-9081.2020050615 | |
16 | MÁXIMO V R, NASCIMENTO M C V. A hybrid adaptive iterated local search with diversification control to the capacitated vehicle routing problem[J]. European Journal of Operational Research, 2021, 294(3): 1108-1119. 10.1016/j.ejor.2021.02.024 |
17 | LI X D, EPITROPAKIS M G, DEB K, et al. Seeking multiple solutions: an updated survey on niching methods and their applications[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(4): 518-538. 10.1109/tevc.2016.2638437 |
18 | 陈娟,徐立鸿.动态小生境遗传算法在多模函数优化中的应用[J].同济大学学报(自然科学版), 2006, 34(5): 684-688. 10.1360/jos172601 |
CHEN J, XU L H. A dynamic niche genetic algorithm for multimodal function optimization[J]. Journal of Tongji University (Natural Science), 2006, 34(5): 684-688. 10.1360/jos172601 | |
19 | 张贵军,陈铭,周晓根.动态小生境半径两阶段多模态差分进化算法[J].控制与决策, 2016, 31(7): 1185-1191. |
ZHANG G J, CHEN M, ZHOU X G. Two-stage differential evolution algorithm using dynamic niche radius for multimodal optimization[J]. Control and Decision, 2016, 31(7): 1185-1191. | |
20 | 马子哲.多模态优化的混合小生境遗传算法[D].天津:天津大学, 2009: 24-30. |
MA Z Z. A hybrid niche genetic algorithm for multimodal function optimization[D]. Tianjin: Tianjin University, 2009: 24-30. | |
21 | 朱任,庄铭杰.小生境粒子群算法在多信号DOA估计中的应用[J].电讯技术, 2022, 62(4): 473-481. 10.3969/j.issn.1001-893x.2022.04.010 |
ZHU R, ZHUANG M J. Application of niche particle swarm optimization in multi-signal DOA estimation[J]. Telecommunication Engineering, 2022, 62(4): 473-481. 10.3969/j.issn.1001-893x.2022.04.010 | |
22 | YANG Q, CHEN W N, LI Y, et al. Multimodal estimation of distribution algorithms[J]. IEEE Transactions on Cybernetics, 2017, 47(3): 636-650. 10.1109/tcyb.2016.2523000 |
23 | 刘云龙,林宝军.一种基于小生境技术的群智能粒子滤波算法[J].控制与决策, 2010, 25(2): 316-320. |
LIU Y L, LIN B J. Swarm intelligence particle filtering based on niching technique[J]. Control and Decision, 2010, 25(2): 316-320. | |
24 | LI M Q, LIN D, KOU J S. A hybrid niching PSO enhanced with recombination-replacement crowding strategy for multimodal function optimization[J]. Applied Soft Computing, 2012, 12(3): 975-987. 10.1016/j.asoc.2011.11.032 |
25 | ZHANG J, HUANG D S, LOK T M, et al. A novel adaptive sequential niche technique for multimodal function optimization[J]. Neurocomputing, 2006, 69(16/17/18): 2396-2401. 10.1016/j.neucom.2006.02.016 |
26 | LUH G C, CHUEH C H. A multi-modal immune algorithm for the job-shop scheduling problem[J]. Information Sciences, 2009, 179(10): 1516-1532. 10.1016/j.ins.2008.11.029 |
27 | PÉREZ E, HERRERA F, HERNÁNDEZ C. Finding multiple solutions in job shop scheduling by niching genetic algorithms[J]. Journal of Intelligent Manufacturing, 2003, 14(3/4): 323-339. 10.1023/a:1024649709582 |
28 | GÖREN S, PIERREVAL H. Taking advantage of a diverse set of efficient production schedules: a two-step approach for scheduling with side concerns[J]. Computers and Operations Research, 2013, 40(8): 1979-1990. 10.1016/j.cor.2013.02.016 |
29 | GÖREN S, BACCOUCHE A, PIERREVAL H. A framework to incorporate decision-maker preferences into simulation optimization to support collaborative design[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(2): 229-237. |
30 | STORN R, PRICE K. Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. 10.1023/a:1008202821328 |
[1] | 冷强奎, 孙薛梓, 孟祥福. 基于样本势和噪声进化的不平衡数据过采样方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2466-2475. |
[2] | 杨乐, 张达敏, 何庆, 邓佳欣, 左锋琴. 改进猎人猎物优化算法在WSN覆盖中的应用[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2506-2513. |
[3] | 李焱, 潘大志, 郑思情. 多车场带时间窗车辆路径问题的改良自适应大邻域搜索算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1897-1904. |
[4] | 魏凤凤, 陈伟能. 分布式数据驱动的多约束进化优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1393-1400. |
[5] | 李建强, 何舟. 面向多行程取送货车辆路径问题的混合NSGA-Ⅱ[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1187-1194. |
[6] | 黄亚伟, 钱雪忠, 宋威. 基于双档案种群大小自适应方法的改进差分进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3844-3853. |
[7] | 王波, 王浩, 杜晓昕, 郑晓东, 周薇. 基于亚群和差分进化的混合蜻蜓算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2868-2876. |
[8] | 高乾顺, 范纯龙, 李炎达, 滕一平. 基于差分进化的神经网络通用扰动生成方法[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3436-3442. |
[9] | 肖智豪, 胡志华, 朱琳. 求解冷链物流时间依赖型车辆路径问题的混合自适应大邻域搜索算法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2926-2935. |
[10] | 聂青青, 万定生, 朱跃龙, 李致家, 姚成. 基于时域卷积网络的水文模型[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1756-1761. |
[11] | 徐小平, 唐阳丽, 王峰. 求解旅行商问题的人工协同搜索算法[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1837-1843. |
[12] | 代荣荣, 李宏慧, 付学良. 基于差分进化融合蚁群算法的数据中心流量调度机制[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3863-3869. |
[13] | 刘志硕, 刘若思, 陈哲. 基于混合蚁群算法的冷链电动汽车车辆路径问题[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3244-3251. |
[14] | 徐郁, 朱韵攸, 刘筱, 邓雨婷, 廖勇. 基于深度强化学习的电力物资配送多目标路径优化[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3252-3258. |
[15] | 张祥飞, 鲁宇明, 张平生. 基于协同进化的约束多目标优化算法[J]. 计算机应用, 2021, 41(7): 2012-2018. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||