《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (9): 2868-2876.DOI: 10.11772/j.issn.1001-9081.2022060813
王波, 王浩, 杜晓昕, 郑晓东, 周薇
收稿日期:2022-06-06
									
				
											修回日期:2022-08-17
									
				
											接受日期:2022-08-22
									
				
											发布日期:2022-09-22
									
				
											出版日期:2023-09-10
									
				
			通讯作者:
					王波
							作者简介:王浩(1996—),男,河南商丘人,硕士研究生,主要研究方向:智能优化算法基金资助:Bo WANG, Hao WANG, Xiaoxin DU, Xiaodong ZHENG, Wei ZHOU
Received:2022-06-06
									
				
											Revised:2022-08-17
									
				
											Accepted:2022-08-22
									
				
											Online:2022-09-22
									
				
											Published:2023-09-10
									
			Contact:
					Bo WANG   
							About author:WANG Hao, born in 1996, M. S. candidate. His research interests include intelligent optimization algorithm.Supported by:摘要:
针对蜻蜓算法(DA)存在开发能力弱、种群多样性低、易过早收敛至局部最优等问题,提出一种基于亚群和差分进化的混合蜻蜓算法(HDASDE)。首先,对基本蜻蜓算法进行改进:融入混沌因子和有目的的莱维飞行来提升蜻蜓算法的寻优能力,并提出混沌跃迁机制加强基本蜻蜓算法的勘探能力;其次,在差分进化(DE)算法的基础上引入反向学习加强DE算法的开发能力;再次,利用亚群策略提高算法跳出局部最优的能力,设计了一种动态双亚群策略将整个种群划分为动态变化的两个亚群;然后使用动态亚群结构将改进蜻蜓算法和改进DE算法进行融合,融合后的算法具有较好的全局勘探能力以及较强的局部开发能力。最后,将HDASDE应用于13个典型的复杂函数优化问题和三杆桁架的设计优化问题,并与原始的DA、DE算法以及其他元启发式优化算法进行对比。实验结果表明,HDASDE在所有13个测试函数中优于DA、DE、人工蜂群(ABC)算法;在12个测试函数中优于粒子群优化(PSO)算法;在10个测试函数中优于灰狼优化(GWO)算法。并且,在三杆桁架的设计优化问题中效果较好。
中图分类号:
王波, 王浩, 杜晓昕, 郑晓东, 周薇. 基于亚群和差分进化的混合蜻蜓算法[J]. 计算机应用, 2023, 43(9): 2868-2876.
Bo WANG, Hao WANG, Xiaoxin DU, Xiaodong ZHENG, Wei ZHOU. Hybrid dragonfly algorithm based on subpopulation and differential evolution[J]. Journal of Computer Applications, 2023, 43(9): 2868-2876.
| 函数表达式 | 维度d | 搜索区域 | 全局最优 | 
|---|---|---|---|
| 30 | [-100,100] | 0 | |
| 30 | [-10,10] | 0 | |
| 30 | [-100,100] | 0 | |
| 30 | [-100,100] | 0 | |
| 30 | [-30,30] | 0 | |
| 30 | [-100,100] | 0 | |
| 30 | [-1.28,1.28] | 0 | |
| 30 | [-500,500] | -418.98d | |
| 30 | [-5.12,5.12] | 0 | |
| 30 | [-32,32] | 0 | |
| 30 | [-600,600] | 0 | |
| 30 | [-50,50] | 0 | |
| 30 | [-50,50] | 0 | 
表1 测试函数
Tab.1 Test functions
| 函数表达式 | 维度d | 搜索区域 | 全局最优 | 
|---|---|---|---|
| 30 | [-100,100] | 0 | |
| 30 | [-10,10] | 0 | |
| 30 | [-100,100] | 0 | |
| 30 | [-100,100] | 0 | |
| 30 | [-30,30] | 0 | |
| 30 | [-100,100] | 0 | |
| 30 | [-1.28,1.28] | 0 | |
| 30 | [-500,500] | -418.98d | |
| 30 | [-5.12,5.12] | 0 | |
| 30 | [-32,32] | 0 | |
| 30 | [-600,600] | 0 | |
| 30 | [-50,50] | 0 | |
| 30 | [-50,50] | 0 | 
| 函数类型 | 测试函数 | 指标 | HDASDE | DA | DE | PSO | ABC | GWO | 
|---|---|---|---|---|---|---|---|---|
| 单 峰 函 数 | F1 | 最优值 | 0.00E+00 | 4.38E+01 | 2.39E-12 | 5.77E-01 | 3.18E-03 | 3.63E-68 | 
| 平均值 | 0.00E+00 | 4.44E+02 | 7.35E-12 | 1.81E+00 | 1.50E-02 | 4.72E-65 | ||
| 标准差 | 0.00E+00 | 2.71E+02 | 4.09E-12 | 1.09E+00 | 7.81E-03 | 1.59E-64 | ||
| F2 | 最优值 | 0.00E+00 | 1.68E+00 | 5.41E-08 | 0.00E+00 | 8.74E-04 | 1.58E-39 | |
| 平均值 | 3.87E-35 | 9.07E+00 | 9.33E-08 | 1.00E+00 | 1.81E-03 | 3.34E-38 | ||
| 标准差 | 2.45E-34 | 2.88E+00 | 2.61E-08 | 3.04E+00 | 8.67E-04 | 3.61E-38 | ||
| F3 | 最优值 | 9.00E-19 | 1.04E+02 | 1.90E+04 | 5.49E+01 | 2.09E+04 | 1.45E-22 | |
| 平均值 | 8.03E-12 | 1.61E+03 | 2.87E+04 | 1.40E+02 | 2.84E+04 | 2.10E-17 | ||
| 标准差 | 3.79E-11 | 1.09E+03 | 4.49E+03 | 6.91E+01 | 3.67E+03 | 6.83E-17 | ||
| F4 | 最优值 | 0.00E+00 | 2.99E+00 | 1.94E-01 | 2.43E+00 | 4.78E+01 | 5.57E-18 | |
| 平均值 | 0.00E+00 | 9.22E+00 | 3.07E-01 | 5.83E+00 | 5.73E+01 | 2.24E-16 | ||
| 标准差 | 0.00E+00 | 2.98E+00 | 5.75E-02 | 2.06E+00 | 3.99E+00 | 3.15E-16 | ||
| F5 | 最优值 | 0.00E+00 | 2.06E+02 | 2.47E+01 | 4.65E+01 | 8.89E+02 | 2.53E+01 | |
| 平均值 | 3.00E+00 | 1.02E+04 | 2.95E+01 | 5.41E+02 | 2.05E+03 | 2.67E+01 | ||
| 标准差 | 8.28E+00 | 1.06E+04 | 1.29E+01 | 3.48E+02 | 8.52E+02 | 7.66E-01 | ||
| F6 | 最优值 | 0.00E+00 | 1.87E+00 | 2.19E-12 | 4.77E-01 | 3.66E-03 | 8.91E-06 | |
| 平均值 | 0.00E+00 | 3.46E+02 | 6.94E-12 | 1.46E+00 | 1.29E-02 | 4.96E-01 | ||
| 标准差 | 0.00E+00 | 2.11E+02 | 4.26E-12 | 6.54E-01 | 5.92E-03 | 2.86E-01 | ||
| 多 峰 函 数 | F7 | 最优值 | 1.24E-03 | 1.13E-02 | 1.48E-01 | 9.14E-04 | 7.89E-02 | 1.40E-04 | 
| 平均值 | 5.90E-03 | 1.03E-01 | 3.77E-01 | 3.70E+00 | 1.27E-01 | 5.69E-04 | ||
| 标准差 | 2.26E-03 | 6.41E-02 | 1.03E-01 | 6.32E+00 | 2.65E-02 | 3.35E-04 | ||
| F8 | 最优值 | -1.26E+04 | -8.02E+03 | -1.17E+04 | -8.99E+03 | -6.13E+03 | -7.87E+03 | |
| 平均值 | -1.26E+04 | -3.19E+03 | -8.93E+03 | -5.01E+03 | -4.77E+03 | -3.43E+03 | ||
| 标准差 | 1.84E-12 | 1.14E+03 | 6.98E+02 | 8.77E+02 | 3.12E+02 | 9.01E+02 | ||
| F9 | 最优值 | 0.00E+00 | 1.56E+01 | 7.00E+01 | 6.94E+01 | 1.89E+02 | 0.00E+00 | |
| 平均值 | 0.00E+00 | 4.17E+01 | 8.65E+01 | 1.26E+02 | 2.19E+02 | 1.39E-01 | ||
| 标准差 | 0.00E+00 | 1.27E+01 | 6.67E+00 | 3.21E+01 | 1.11E+01 | 8.80E-01 | ||
| F10 | 最优值 | 4.44E-15 | 4.12E+00 | 3.54E-07 | 3.07E-01 | 1.11E-01 | 7.99E-15 | |
| 平均值 | 4.44E-15 | 5.69E+00 | 6.35E-07 | 3.36E+00 | 6.31E-01 | 1.43E-14 | ||
| 标准差 | 0.00E+00 | 1.10E+00 | 1.36E-07 | 9.09E-01 | 5.12E-01 | 2.61E-15 | ||
| F11 | 最优值 | 0.00E+00 | 1.13E+00 | 6.72E-12 | 5.59E-02 | 2.33E-01 | 0.00E+00 | |
| 平均值 | 0.00E+00 | 4.00E+00 | 5.80E-10 | 1.57E-01 | 5.07E-01 | 2.45E-03 | ||
| 标准差 | 0.00E+00 | 1.93E+00 | 1.66E-09 | 4.99E-02 | 1.23E-01 | 6.24E-03 | ||
| F12 | 最优值 | 1.57E-32 | 5.42E-01 | 5.94E-13 | 9.54E-01 | 2.42E+01 | 2.45E-06 | |
| 平均值 | 1.57E-32 | 4.11E+00 | 2.04E-12 | 6.06E+00 | 1.03E+03 | 3.48E-02 | ||
| 标准差 | 5.54E-48 | 2.38E+00 | 1.37E-12 | 4.07E+00 | 5.57E+03 | 2.33E-02 | ||
| F13 | 最优值 | 1.35E-32 | 4.95E+00 | 1.45E-12 | 4.04E-01 | 3.30E+01 | 2.80E-05 | |
| 平均值 | 1.35E-32 | 6.32E+01 | 8.04E-12 | 5.54E+00 | 2.92E+03 | 3.91E-01 | ||
| 标准差 | 5.54E-48 | 2.23E+02 | 5.11E-12 | 8.55E+00 | 4.71E+03 | 1.85E-01 | 
表2 不同算法在测试函数上的结果对比
Tab. 2 Comparison of results of different algorithms on test functions
| 函数类型 | 测试函数 | 指标 | HDASDE | DA | DE | PSO | ABC | GWO | 
|---|---|---|---|---|---|---|---|---|
| 单 峰 函 数 | F1 | 最优值 | 0.00E+00 | 4.38E+01 | 2.39E-12 | 5.77E-01 | 3.18E-03 | 3.63E-68 | 
| 平均值 | 0.00E+00 | 4.44E+02 | 7.35E-12 | 1.81E+00 | 1.50E-02 | 4.72E-65 | ||
| 标准差 | 0.00E+00 | 2.71E+02 | 4.09E-12 | 1.09E+00 | 7.81E-03 | 1.59E-64 | ||
| F2 | 最优值 | 0.00E+00 | 1.68E+00 | 5.41E-08 | 0.00E+00 | 8.74E-04 | 1.58E-39 | |
| 平均值 | 3.87E-35 | 9.07E+00 | 9.33E-08 | 1.00E+00 | 1.81E-03 | 3.34E-38 | ||
| 标准差 | 2.45E-34 | 2.88E+00 | 2.61E-08 | 3.04E+00 | 8.67E-04 | 3.61E-38 | ||
| F3 | 最优值 | 9.00E-19 | 1.04E+02 | 1.90E+04 | 5.49E+01 | 2.09E+04 | 1.45E-22 | |
| 平均值 | 8.03E-12 | 1.61E+03 | 2.87E+04 | 1.40E+02 | 2.84E+04 | 2.10E-17 | ||
| 标准差 | 3.79E-11 | 1.09E+03 | 4.49E+03 | 6.91E+01 | 3.67E+03 | 6.83E-17 | ||
| F4 | 最优值 | 0.00E+00 | 2.99E+00 | 1.94E-01 | 2.43E+00 | 4.78E+01 | 5.57E-18 | |
| 平均值 | 0.00E+00 | 9.22E+00 | 3.07E-01 | 5.83E+00 | 5.73E+01 | 2.24E-16 | ||
| 标准差 | 0.00E+00 | 2.98E+00 | 5.75E-02 | 2.06E+00 | 3.99E+00 | 3.15E-16 | ||
| F5 | 最优值 | 0.00E+00 | 2.06E+02 | 2.47E+01 | 4.65E+01 | 8.89E+02 | 2.53E+01 | |
| 平均值 | 3.00E+00 | 1.02E+04 | 2.95E+01 | 5.41E+02 | 2.05E+03 | 2.67E+01 | ||
| 标准差 | 8.28E+00 | 1.06E+04 | 1.29E+01 | 3.48E+02 | 8.52E+02 | 7.66E-01 | ||
| F6 | 最优值 | 0.00E+00 | 1.87E+00 | 2.19E-12 | 4.77E-01 | 3.66E-03 | 8.91E-06 | |
| 平均值 | 0.00E+00 | 3.46E+02 | 6.94E-12 | 1.46E+00 | 1.29E-02 | 4.96E-01 | ||
| 标准差 | 0.00E+00 | 2.11E+02 | 4.26E-12 | 6.54E-01 | 5.92E-03 | 2.86E-01 | ||
| 多 峰 函 数 | F7 | 最优值 | 1.24E-03 | 1.13E-02 | 1.48E-01 | 9.14E-04 | 7.89E-02 | 1.40E-04 | 
| 平均值 | 5.90E-03 | 1.03E-01 | 3.77E-01 | 3.70E+00 | 1.27E-01 | 5.69E-04 | ||
| 标准差 | 2.26E-03 | 6.41E-02 | 1.03E-01 | 6.32E+00 | 2.65E-02 | 3.35E-04 | ||
| F8 | 最优值 | -1.26E+04 | -8.02E+03 | -1.17E+04 | -8.99E+03 | -6.13E+03 | -7.87E+03 | |
| 平均值 | -1.26E+04 | -3.19E+03 | -8.93E+03 | -5.01E+03 | -4.77E+03 | -3.43E+03 | ||
| 标准差 | 1.84E-12 | 1.14E+03 | 6.98E+02 | 8.77E+02 | 3.12E+02 | 9.01E+02 | ||
| F9 | 最优值 | 0.00E+00 | 1.56E+01 | 7.00E+01 | 6.94E+01 | 1.89E+02 | 0.00E+00 | |
| 平均值 | 0.00E+00 | 4.17E+01 | 8.65E+01 | 1.26E+02 | 2.19E+02 | 1.39E-01 | ||
| 标准差 | 0.00E+00 | 1.27E+01 | 6.67E+00 | 3.21E+01 | 1.11E+01 | 8.80E-01 | ||
| F10 | 最优值 | 4.44E-15 | 4.12E+00 | 3.54E-07 | 3.07E-01 | 1.11E-01 | 7.99E-15 | |
| 平均值 | 4.44E-15 | 5.69E+00 | 6.35E-07 | 3.36E+00 | 6.31E-01 | 1.43E-14 | ||
| 标准差 | 0.00E+00 | 1.10E+00 | 1.36E-07 | 9.09E-01 | 5.12E-01 | 2.61E-15 | ||
| F11 | 最优值 | 0.00E+00 | 1.13E+00 | 6.72E-12 | 5.59E-02 | 2.33E-01 | 0.00E+00 | |
| 平均值 | 0.00E+00 | 4.00E+00 | 5.80E-10 | 1.57E-01 | 5.07E-01 | 2.45E-03 | ||
| 标准差 | 0.00E+00 | 1.93E+00 | 1.66E-09 | 4.99E-02 | 1.23E-01 | 6.24E-03 | ||
| F12 | 最优值 | 1.57E-32 | 5.42E-01 | 5.94E-13 | 9.54E-01 | 2.42E+01 | 2.45E-06 | |
| 平均值 | 1.57E-32 | 4.11E+00 | 2.04E-12 | 6.06E+00 | 1.03E+03 | 3.48E-02 | ||
| 标准差 | 5.54E-48 | 2.38E+00 | 1.37E-12 | 4.07E+00 | 5.57E+03 | 2.33E-02 | ||
| F13 | 最优值 | 1.35E-32 | 4.95E+00 | 1.45E-12 | 4.04E-01 | 3.30E+01 | 2.80E-05 | |
| 平均值 | 1.35E-32 | 6.32E+01 | 8.04E-12 | 5.54E+00 | 2.92E+03 | 3.91E-01 | ||
| 标准差 | 5.54E-48 | 2.23E+02 | 5.11E-12 | 8.55E+00 | 4.71E+03 | 1.85E-01 | 
| 测试函数 | DA | DE | PSO | ABC | GWO | 
|---|---|---|---|---|---|
| (-/+/=) | 13/0/0 | 13/0/0 | 12/1/0 | 13/0/0 | 10/2/1 | 
| F1 | - | - | - | - | - | 
| F2 | - | - | + | - | - | 
| F3 | - | - | - | - | + | 
| F4 | - | - | - | - | - | 
| F5 | - | - | - | - | - | 
| F6 | - | - | - | - | - | 
| F7 | - | - | - | - | + | 
| F8 | - | - | - | - | - | 
| F9 | - | - | - | - | - | 
| F10 | - | - | - | - | - | 
| F11 | - | - | - | - | = | 
| F12 | - | - | - | - | - | 
| F13 | - | - | - | - | - | 
表3 Wilcoxon符号秩检验
Tab.3 Wilcoxon signed-rank test
| 测试函数 | DA | DE | PSO | ABC | GWO | 
|---|---|---|---|---|---|
| (-/+/=) | 13/0/0 | 13/0/0 | 12/1/0 | 13/0/0 | 10/2/1 | 
| F1 | - | - | - | - | - | 
| F2 | - | - | + | - | - | 
| F3 | - | - | - | - | + | 
| F4 | - | - | - | - | - | 
| F5 | - | - | - | - | - | 
| F6 | - | - | - | - | - | 
| F7 | - | - | - | - | + | 
| F8 | - | - | - | - | - | 
| F9 | - | - | - | - | - | 
| F10 | - | - | - | - | - | 
| F11 | - | - | - | - | = | 
| F12 | - | - | - | - | - | 
| F13 | - | - | - | - | - | 
| 算法 | 优化变量 | 最优值 | |
|---|---|---|---|
| A1 | A2 | ||
| DA | 0.784 043 | 0.421 509 | 263.911 867 | 
| DE | 0.784 405 | 0.420 460 | 263.909 439 | 
| ABC | 0.788 689 | 0.408 325 | 263.907 749 | 
| GWO | 0.787 470 | 0.411 678 | 263.898 126 | 
| PSO | 0.788 714 | 0.408 137 | 263.895 843 | 
| GOA | 0.788 897 | 0.407 619 | 263.895 881 | 
| ALO | 0.788 662 | 0.408 283 | 263.895 843 | 
| MGWO-Ⅲ | 0.788 693 | 0.408 199 | 263.895 860 | 
| MGWO-Ⅱ | 0.788 861 | 0.407 724 | 263.895 880 | 
| GWO-Ⅰ | 0.788 561 | 0.408 571 | 263.895 890 | 
| SCA | 0.789 068 | 0.407 162 | 263.898 380 | 
| MVO | 0.788 993 | 0.407 351 | 263.895 940 | 
| GSA | 0.777 622 | 0.448 853 | 264.829 960 | 
| CS | 0.788 670 | 0.409 020 | 263.971 600 | 
| ERDSSA | 0.795 000 | 0.395 000 | 264.300 000 | 
| HDASDE | 0.788 668 | 0.408 265 | 263.895 843 | 
表4 不同算法求解三杆桁架设计问题得到的最优值
Tab.4 Optimal values obtained by different algorithms in solving three-bar truss design problem
| 算法 | 优化变量 | 最优值 | |
|---|---|---|---|
| A1 | A2 | ||
| DA | 0.784 043 | 0.421 509 | 263.911 867 | 
| DE | 0.784 405 | 0.420 460 | 263.909 439 | 
| ABC | 0.788 689 | 0.408 325 | 263.907 749 | 
| GWO | 0.787 470 | 0.411 678 | 263.898 126 | 
| PSO | 0.788 714 | 0.408 137 | 263.895 843 | 
| GOA | 0.788 897 | 0.407 619 | 263.895 881 | 
| ALO | 0.788 662 | 0.408 283 | 263.895 843 | 
| MGWO-Ⅲ | 0.788 693 | 0.408 199 | 263.895 860 | 
| MGWO-Ⅱ | 0.788 861 | 0.407 724 | 263.895 880 | 
| GWO-Ⅰ | 0.788 561 | 0.408 571 | 263.895 890 | 
| SCA | 0.789 068 | 0.407 162 | 263.898 380 | 
| MVO | 0.788 993 | 0.407 351 | 263.895 940 | 
| GSA | 0.777 622 | 0.448 853 | 264.829 960 | 
| CS | 0.788 670 | 0.409 020 | 263.971 600 | 
| ERDSSA | 0.795 000 | 0.395 000 | 264.300 000 | 
| HDASDE | 0.788 668 | 0.408 265 | 263.895 843 | 
| 1 | HOLLAND J H. Genetic algorithms[J]. Scientific American, 1992, 267(1):66-73. 10.1038/scientificamerican0792-66 | 
| 2 | AYDIN M E, FOGARTY T C. A distributed evolutionary simulated annealing algorithm for combinatorial optimisation problems[J]. Journal of Heuristics, 2004, 10(3):269-292. 10.1023/b:heur.0000026896.44360.f9 | 
| 3 | 李晓磊,路飞,田国会,等. 组合优化问题的人工鱼群算法应用[J]. 山东大学学报(工学版), 2004, 34(5):64-67. | 
| LI X L, LU F, TIAN G H, et al. Applications of artificial fish school algorithm in combinatorial optimization problems[J]. Journal of Shandong University (Engineering Science), 2004, 34(5):64-67. | |
| 4 | GANDOMI A H, YANG X S, ALAVI A H. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems[J]. Engineering with Computers, 2013, 29(1):17-35. 10.1007/s00366-011-0241-y | 
| 5 | DERELI S. A novel approach based on average swarm intelligence to improve the whale optimization algorithm[J]. Arabian Journal for Science and Engineering, 2022, 47(2):1763-1776. 10.1007/s13369-021-06042-3 | 
| 6 | MIRJALILI S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27(4):1053-1073. 10.1007/s00521-015-1920-1 | 
| 7 | THARWAT A, GABEL T, HASSANIEN A E. Parameter optimization of support vector machine using dragonfly algorithm[C]// Proceedings of the 2017 International Conference on Advanced Intelligent Systems and Informatics, AISC 639. Cham: Springer, 2018: 309-319. 10.1007/978-3-319-64861-3_29 | 
| 8 | NAIR S P, MARY LINDA M. An efficient maximum power point tracking in hybrid solar and wind energy system: a combined MDA-RNN technique[J]. Journal of Intelligent and Fuzzy Systems, 2019, 37(4):5495-5514. 10.3233/jifs-190591 | 
| 9 | SALAM M A, ZAWBAA H M, EMARY E, et al. A hybrid dragonfly algorithm with extreme learning machine for prediction[C]// Proceedings of the 2016 International Symposium on INnovations in Intelligent SysTems and Applications. Piscataway: IEEE, 2016: 1-6. 10.1109/inista.2016.7571839 | 
| 10 | MAFARJA M M, ELEYAN D, JABER I, et al. Binary dragonfly algorithm for feature selection[C]// Proceedings of the 2017 International Conference on New Trends in Computing Sciences. Piscataway: IEEE, 2017: 12-17. 10.1109/ictcs.2017.43 | 
| 11 | BHESDADIYA R H, PANDYA M H, TRIVEDI I N, et al. Price penalty factors based approach for combined economic emission dispatch problem solution using dragonfly algorithm[C]// Proceedings of the 2016 International Conference on Energy Efficient Technologies for Sustainability. Piscataway: IEEE, 2016: 436-441. 10.1109/iceets.2016.7583794 | 
| 12 | MARGARITA A D C, NOE O S, HINOJOSA S, et al. A multi-level thresholding method for breast thermograms analysis using dragonfly algorithm[J]. Infrared Physics and Technology, 2018, 93:346-361. 10.1016/j.infrared.2018.08.007 | 
| 13 | SCREE RANJINI K S, MURUGAN S. Memory based hybrid dragonfly algorithm for numerical optimization problems[J]. Expert Systems with Applications, 2017, 83:63-78. 10.1016/j.eswa.2017.04.033 | 
| 14 | SAYED G I, THARWAT A, HASSANIEN A E. Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection[J]. Applied Intelligence, 2019, 49(1):188-205. 10.1007/s10489-018-1261-8 | 
| 15 | SINGH P, MEENA N K, YANG J, et al. Modified dragonfly optimisation for distributed energy mix in distribution networks[J]. Energies, 2021, 14(18): No.5690. 10.3390/en14185690 | 
| 16 | CUI X T, LI Y, FAN J H, et al. A hybrid improved dragonfly algorithm for feature selection[J]. IEEE Access, 2020, 8:155619-155629. 10.1109/access.2020.3012838 | 
| 17 | 张水平,高栋. 基于随机替换和混合变异的蜻蜓算法[J]. 科学技术与工程, 2020, 20(22):9108-9115. 10.3969/j.issn.1671-1815.2020.22.038 | 
| ZHANG S P, GAO D. Dragonfly algorithm based on random replacement and hybrid mutation[J]. Science Technology and Engineering, 2020, 20(22):9108-9115. 10.3969/j.issn.1671-1815.2020.22.038 | |
| 18 | STORN R, PRICE K. Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4):341-359. 10.1023/a:1008202821328 | 
| 19 | 汤安迪,韩统,徐登武,等. 混沌多精英鲸鱼优化算法[J]. 北京航空航天大学学报, 2021, 47(7):1481-1494. | 
| TANG A D, HAN T, XU D W, et al. Chaos multi-elite whale optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7):1481-1494. | |
| 20 | LÜ Q Z, JIANG J H, YU R Q, et al. A genetic algorithm based on prepotency evolution using chaotic initiation used for network training[J]. Journal of Chemical Information and Computer Sciences, 2003, 43(4):1132-1137. 10.1021/ci020068t | 
| 21 | KAUR G, ARORA S. Chaotic whale optimization algorithm[J]. Journal of Computational Design and Engineering, 2018, 5(3):275-284. 10.1016/j.jcde.2017.12.006 | 
| 22 | LIANG J J, SUGANTHAN P N. Dynamic multi-swarm particle swarm optimizer[C]// Proceedings of the 2005 IEEE Swarm Intelligence Symposium. Piscataway: IEEE: 2005: 124-129. | 
| 23 | WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1):67-82. 10.1109/4235.585893 | 
| 24 | SAREMI S, MIRJALILI S, LEWIS A. Biogeography-based optimisation with chaos[J]. Neural Computing and Applications, 2014, 25(5):1077-1097. 10.1007/s00521-014-1597-x | 
| 25 | RAHNAMAYAN S, TIZHOOSH H R, SALAMA M M A. Opposition-based differential evolution[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 64-79. 10.1109/tevc.2007.894200 | 
| 26 | KARABOGA D, BASTURK B. On the performance of Artificial Bee Colony (ABC) algorithm[J]. Applied Soft Computing, 2008, 8(1): 687-697. 10.1016/j.asoc.2007.05.007 | 
| 27 | KENNEDY J, EBERHART R. Particle swarm optimization[J]. Proceedings of the 1995 International Conference on Neural Networks - Volume 4. Piscataway: IEEE,1995: 1942-1948. | 
| 28 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69:46-61. 10.1016/j.advengsoft.2013.12.007 | 
| 29 | 刘景森,袁蒙蒙,李煜. 基于改进樽海鞘群算法求解工程优化设计问题[J]. 系统仿真学报, 2021, 33(4):854-866. | 
| LIU J S, YUAN M M, LI Y. Solving engineering optimization design problem based on improved salp swarm algorithm[J]. Journal of System Simulation, 2021, 33(4):854-866. | |
| 30 | BRÜTTING J, DESRUELLE J, SENATORE G, et al. Design of truss structures through reuse[J]. Structures, 2019, 18: 128-137. 10.1016/j.istruc.2018.11.006 | 
| [1] | 力尚龙, 刘建华, 贾鹤鸣. 融合多狩猎协调策略的爬行动物搜索算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2818-2828. | 
| [2] | 冷强奎, 孙薛梓, 孟祥福. 基于样本势和噪声进化的不平衡数据过采样方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2466-2475. | 
| [3] | 杨乐, 张达敏, 何庆, 邓佳欣, 左锋琴. 改进猎人猎物优化算法在WSN覆盖中的应用[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2506-2513. | 
| [4] | 魏凤凤, 陈伟能. 分布式数据驱动的多约束进化优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1393-1400. | 
| [5] | 杜晓昕, 周薇, 王浩, 郝田茹, 王振飞, 金梅, 张剑飞. 智能算法的亚群优化策略综述[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 819-830. | 
| [6] | 黄亚伟, 钱雪忠, 宋威. 基于双档案种群大小自适应方法的改进差分进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3844-3853. | 
| [7] | 林剑, 叶璟轩, 刘雯雯, 邵晓雯. 求解带容量约束车辆路径问题的多模态差分进化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2248-2254. | 
| [8] | 向君幸, 吴永红. 基于邻域重心反向学习的混合樽海鞘群蝴蝶优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 820-826. | 
| [9] | 邱仲睿, 苗虹, 曾成碧. 多策略融合的改进黏菌算法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 812-819. | 
| [10] | 高乾顺, 范纯龙, 李炎达, 滕一平. 基于差分进化的神经网络通用扰动生成方法[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3436-3442. | 
| [11] | 徐小平, 唐阳丽, 王峰. 求解旅行商问题的人工协同搜索算法[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1837-1843. | 
| [12] | 聂青青, 万定生, 朱跃龙, 李致家, 姚成. 基于时域卷积网络的水文模型[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1756-1761. | 
| [13] | 雍欣, 高岳林, 赫亚华, 王惠敏. 多策略融合的改进萤火虫算法[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3847-3855. | 
| [14] | 代荣荣, 李宏慧, 付学良. 基于差分进化融合蚁群算法的数据中心流量调度机制[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3863-3869. | 
| [15] | 汤安迪, 韩统, 徐登武, 谢磊. 基于混沌麻雀搜索算法的无人机航迹规划方法[J]. 计算机应用, 2021, 41(7): 2128-2136. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||