1 |
王海港,刘路登,张炜,等. 参与电力系统恢复的风电优化调度模型与策略[J]. 重庆理工大学学报(自然科学), 2020, 34(12):218-225.
|
|
WANG H G, LIU L D, ZHANG W, et al. Wind power optimal dispatch model and strategy for power system restoration[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(12): 218-225.
|
2 |
SUTTON R S, BARTO A G. Reinforcement Learning: An Introduction[M]. 2nd ed. Cambridge: MIT Press, 2018: 2-9.
|
3 |
LEI L, TAN Y, ZHENG K, et al. Deep reinforcement learning for autonomous internet of things: model, applications and challenges[J]. IEEE Communications Surveys and Tutorials, 2020, 22(3): 1722-1760. 10.1109/comst.2020.2988367
|
4 |
ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: a brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26-38. 10.1109/msp.2017.2743240
|
5 |
KOÇ Ç, KARAOGLAN I. The green vehicle routing problem: a heuristic based exact solution approach[J]. Applied Soft Computing, 2016, 39: 154-164. 10.1016/j.asoc.2015.10.064
|
6 |
尹庆,钟雯,胡文,等. 基于CW节约算法下的乳品配送优化研究[J]. 现代商业, 2020(11): 22-24.
|
|
YIN Q, ZHONG W, HU W, et al. Research on dairy product distribution optimization based on CW saving algorithm[J]. Modern Business, 2020(11): 22-24.
|
7 |
吴哲,徐圣伦,杨春梅,等. 切割路径优化问题的自适应大邻域搜索退火算法[J]. 重庆理工大学学报(自然科学), 2020, 34(9): 230-237, 244. 10.3969/j.issn.1674-8425(z).2020.09.027
|
|
WU Z, XU S L, YANG C M, et al. An adaptive large neighborhood search-simulated annealing algorithm for cutting path optimization[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(9): 230-237, 244. 10.3969/j.issn.1674-8425(z).2020.09.027
|
8 |
李进,王凤,杨沈宇. 换电模式下电动车货运路径优化模型与算法[J]. 计算机应用, 2021, 41(6): 1792-1798.
|
|
LI J, WANG F, YANG S Y. Freight routing optimization model and algorithm of battery-swapping electric vehicle[J]. Journal of Computer Applications, 2021, 41(6): 1792-1798.
|
9 |
ZHOU S Y, LIU X, XU Y F, et al. A Deep Q-Network (DQN) based path planning method for mobile robots[C]// Proceedings of the 2018 IEEE International Conference on Information and Automation. Piscataway: IEEE, 2018: 366-371. 10.1109/icinfa.2018.8812452
|
10 |
LI J W, XIN L, CAO Z G, et al. Heterogeneous attentions for solving pickup and delivery problem via deep reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3):2306-2315. 10.1109/tits.2021.3056120
|
11 |
陈国勇. 电网物流配送优化模型构建及仿真研究[J]. 自动化技术与应用, 2018, 37(12):137-140. 10.3969/j.issn.1003-7241.2018.12.031
|
|
CHEN G Y. Optimization model construction and simulation research of power grid logistics distribution system[J]. Techniques of Automation and Applications, 2018, 37(12):137-140. 10.3969/j.issn.1003-7241.2018.12.031
|
12 |
田立燚. 电网公司电力应急物资配送网络优化研究[D]. 北京:华北电力大学, 2020:10-21.
|
|
TIAN L Y. Research on optimization of emergency supplies distribution network for power grid companies[D]. Beijing: North China Electric Power University, 2020:10-21.
|
13 |
ERDOĞAN S, MILLER-HOOKS E. A green vehicle routing problem[J]. Transportation Research Part E: Logistics and Transportation Review, 2012, 48(1): 100-114. 10.1016/j.tre.2011.08.001
|
14 |
NAZARI M, OROOJLOOY A, TAKÁČ M, et al. Reinforcement learning for solving the vehicle routing problem[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 9861-9871. 10.1109/aidas47888.2019.8970890
|
15 |
MANCHELLA K, UMRAWAL A K, AGGARWAL V. FlexPool: a distributed model-free deep reinforcement learning algorithm for joint passengers and goods transportation[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(4): 2035-2047. 10.1109/tits.2020.3048361
|
16 |
LI Y X. Deep reinforcement learning: an overview[EB/OL]. (2018-11-26) [2021-08-20]..
|
17 |
YU J J Q, YU W, GU J T. Online vehicle routing with neural combinatorial optimization and deep reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3806-3817. 10.1109/tits.2019.2909109
|
18 |
AHAMED T, ZOU B, FARAZI N P, et al. Deep reinforcement learning for crowdsourced urban delivery: system states characterization, heuristics-guided action choice, and rule-interposing integration[EB/OL]. (2020-11-29) [2021-08-20].. 10.1016/j.trb.2021.08.015
|
19 |
KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2021-08-20]..
|
20 |
VERA J M, ABAD A G. Deep reinforcement learning for routing a heterogeneous fleet of vehicles[C]// Proceedings of the 2019 IEEE Latin American Conference on Computational Intelligence. Piscataway: IEEE, 2019: 1-6. 10.1109/la-cci47412.2019.9037042
|