1 |
AGGARWAL C C, ZHAI C X. A survey of text classification algorithms[M]// Mining Text Data. Boston: Springer, 2012: 163-222. 10.1007/978-1-4614-3223-4_6
|
2 |
KIPFT N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2022-09-25]..
|
3 |
YANG B, FU X, SIDIROPOULOS N D, et al. Towards K-means-friendly spaces: simultaneous deep learning and clustering[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 3861-3870.
|
4 |
HARTIGAN J A, WONG M A. Algorithm AS 136: a K-means clustering algorithm[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1979, 28(1): 100-108. 10.2307/2346830
|
5 |
XIE J Y, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 478-487.
|
6 |
JIANG Z X, ZHENG Y, TAN H C, et al. Variational deep embedding: an unsupervised and generative approach to clustering[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 1965-1972. 10.24963/ijcai.2017/273
|
7 |
KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. (2022-12-10) [2023-02-26].. 10.1561/2200000056
|
8 |
BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL]. (2014-05-21) [2022-09-25].. 10.1017/cbo9780511761942.003
|
9 |
KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL]. (2016-11-21) [2022-09-26]..
|
10 |
PAN S R, HU R Q, FUNG S F, et al. Learning graph embedding with adversarial training methods[J]. IEEE Transactions on Cybernetics, 2020, 50(6): 2475-2487. 10.1109/tcyb.2019.2932096
|
11 |
WANG C, PAN S R, LONG G D, et al. MGAE: marginalized graph autoencoder for graph clustering[C]// Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017:889-898. 10.1145/3132847.3132967
|
12 |
STRETCU O, VISWANATHAN K, MOVSGOVITZ-ATTIAS D, et al. Graph agreement models for semi-supervised learning[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 8713-8723.
|
13 |
WANG C, PAN S R, YU C P, et al. Deep neighbor-aware embedding for node clustering in attributed graphs[J]. Pattern Recognition, 2022, 122: No.108230. 10.1016/j.patcog.2021.108230
|
14 |
BO D Y, WANG X, SHI C, et al. Structural deep clustering network[C]// Proceedings of the Web Conference 2020. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2020: 1400-1410. 10.1145/3366423.3380214
|
15 |
PENG Z H, LIU H, JIA Y H, et al. Attention-driven graph clustering network[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 935-943. 10.1145/3474085.3475276
|
16 |
VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]// Proceedings of the 25th International Conference on Machine Learning. New York: ACM, 2008:1096-1103. 10.1145/1390156.1390294
|
17 |
MASCI J, MEIER U, CIREŞAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]// Proceedings of the 2011 International Conference on Artificial Neural Networks, LNCS 6791. Berlin: Springer, 2011: 52-59.
|
18 |
MALHOTRA P, VISHNU T V, RAMAKRISHNAN A, et al. Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder[C/OL]// Proceedings of the 1st ACM SIGKDD Workshop on Machine Learning for Prognostics and Health Management ( 2016-08-22) [2022-09-26]..
|
19 |
MAKHZANI A, SHLENS J, JAITLY N, et al. Adversarial autoencoders[EB/OL]. (2016-05-25) [2022-09-26]..
|
20 |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. 10.1126/science.1127647
|
21 |
NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]// Proceedings of the 27th International Conference on Machine Learning. Madison, WI: Omnipress, 2010:807-814.
|
22 |
L van der MAATEN, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
|
23 |
WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]// Proceedings of the World Wide Web Conference 2019. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2019: 2022-2032. 10.1145/3308558.3313562
|
24 |
LEWIS D D, YANG Y M, ROSE T G, et al. RCV1: a new benchmark collection for text categorization research[J]. Journal of Machine Learning Research, 2004, 5: 361-397.
|
25 |
黄瑞章,白瑞娜,陈艳平,等. CMDC:一种差异互补的迭代式多维度文本聚类算法[J]. 通信学报, 2020, 41(8): 155-164. 10.11959/j.issn.1000-436x.2020152
|
|
HUANG R Z, BAI R N, CHEN Y P, et al. CMDC: an iterative algorithm for complementary multi-view document clustering[J]. Journal on Communications, 2020, 41(8): 155-164. 10.11959/j.issn.1000-436x.2020152
|
26 |
KRASKOV A, STÖGBAUER H, GRASSBERGER P. Estimating mutual information[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(6): No.066138. 10.1103/physreve.69.066138
|