[1] 石永彪, 张湧. 车载红外夜视技术发展研究综述[J]. 红外技术, 2019,41(6):504-510. (SHI Y B, ZHANG Y. Survey on development about vehicular infrared night vision technology[J]. Infrared Technology,2019,41(6):504-510.) [2] 陈军, 张长江. 基于小波域反正切变换的红外图像增强算法[J]. 计算机工程, 2013, 39(1):248-251.(CHEN J,ZHANG C J. Infrared image enhancement algorithm based on arc-tangent transform in wavelet domain[J]. Computer Engineering,2013,39(1):248-251.) [3] 曹海杰, 刘宁, 许吉, 等. 红外图像自适应逆直方图增强技术[J]. 红外与激光工程, 2020, 49(4):0426003.1-0426003.7.(CAO H J,LIU N,XU J, et al. Infrared image adaptive inverse histogram enhancement technology[J]. Infrared and Laser Engineering, 2020,49(4):0426003.1-0426003.7.) [4] LIU X,CHEN Y,PENG Z,et al. Infrared image super-resolution reconstruction based on quaternion and high-order overlapping group sparse total variation[J]. Sensors,2019,19(23):Article No. 5139. [5] 王瑞尧, 岳雪亭, 周志青, 等. 最大差值图决策的低照度图像自适应增强算法[J]. 计算机应用, 2020, 40(4):1164-1170.(WANG R Y, YUE X T, ZHOU Z Q, et al. Adaptive enhancement algorithm of low illumination image based on maximum difference image decision[J]. Journal of Computer Applications,2020,40(4):1164-1170.) [6] 刘小园, 衣扬, 杨磊. 基于时域自适应滤波及非局部平均的夜视图像去噪算法[J]. 计算机应用研究, 2018, 35(6):1917-1920. (LIU X Y,YI Y,YANG L. Night vision image denoising algorithm based on time domain adaptive filtering and non-local means[J]. Application Research of Computers,2018,35(6):1917-1920.) [7] BU L,XU Z,ZHANG G,et al. Night-light image restoration method based on night scattering model for Luojia 1-01 satellite[J]. Sensors,2019,19(17):Article No. 3761. [8] MA S,MA H,XU Y,et al. A low-light sensor image enhancement algorithm based on HSI color model[J]. Sensors,2018,18(10):Article No. 3583. [9] 朱浩然, 刘云清, 张文颖. 基于灰度变换与两尺度分解的夜视图像融合[J]. 电子与信息学报, 2019, 41(3):640-648.(ZHU H R, LIU Y Q,ZHANG W Y. Night-vision image fusion based on intensity transformation and two-scale decomposition[J]. Journal of Electronics and Information Technology,2019,41(3):640-648.) [10] 杨钒, 钱立志, 刘晓, 等. 红外与微光图像开窗配准融合处理方法[J]. 激光与红外, 2018, 48(8):1060-1064.(YANG F,QIAN L Z,LIU X,et al. The window registration and fusion processing method for infrared and low light level images[J]. Laser and Infrared,2018,48(8):1060-1064.) [11] BAMRUNGTHAI P,WONGKAMCHANG P. Development of a thermal/visible image fusion system for situation awareness[C]//Proceedings of the 2018 5th International Conference on Advanced Informatics:Concept Theory and Applications. Piscataway:IEEE,2018:96-100. [12] LIU Y,DONG L,JI Y,et al. Infrared and visible image fusion through details preservation[J]. Sensors,2019,19(20):Article No. 4556. [13] 邹鹏, 谌雨章, 陈龙彪, 等. 基于神经网络的光照分布预测夜视复原算法[J]. 计算机科学, 2019, 46(11A):329-333, 340.(ZOU P,CHEN Y Z,CHEN L B,et al. Night vision restoration algorithm based on neural network for illumination distribution prediction[J]. Computer Science, 2019, 46(11A):329-333,340.) [14] 王丹, 陈亮. 基于深度学习的红外夜视图像超分辨率重建[J]. 红外技术, 2019, 41(10):963-969.(WANG D,CHEN L. Superresolution reconstruction of infrared images in night environments based on deep-learning[J]. Infrared Technology,2019,41(10):963-969.) [15] HE K,ZHANG X,REN S,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015, 37(9):1904-1916. [16] 陈龙彪, 谌雨章, 王晓晨, 等. 基于深度学习的水下图像超分辨率重建方法[J]. 计算机应用, 2019, 39(9):2738-2743.(CHEN L B,CHEN Y Z,WANG X C,et al. Underwater image superresolution reconstruction method based on deep learning[J]. Journal of Computer Applications,2019,39(9):2738-2743.) [17] SCHAEFER G,STICH M. UCID:an uncompressed color image database[C]//Proceedings of the SPIE 5307, Storage and Retrieval Methods and Applications for Multimedia 2004. Bellingham:SPIE,2004:472-480. [18] CHEN Y, CHEN J. Spatial adaptive regularized MAP reconstruction for LD-based night vision[J]. Optik,2014,125(13):3162-3165. [19] CHEN Y,YANG W,TAN H,et al. Image enhancement for LD based imaging in turbid water[J]. Optik,2016,127(2):517-521. [20] DONG C,LOY C C,HE K,et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 2014 European Conference on Computer Vision,LNCS 8692. Cham:Springer,2014:184-199. [21] KIM J,LEE J K,LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1646-1654. [22] KIM J,LEE J K,LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1637-1645. [23] LIM B,SON S,KIM H,et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2017:1132-1140. [24] FU X,ZENG D,HUANG Y,et al. A weighted variational model for simultaneous reflectance and illumination estimation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:2782-2790. [25] JOBSON D J,RAHMAN Z,WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing,1997,6(7):965-976. [26] GUO X,LI Y,LING H. LIME:low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing,2017,26(2):982-993. [27] NGUYEN C T,HAVLICEK J P. Linear adaptive infrared image fusion[C]//Proceedings of the 2014 Southwest Symposium on Image Analysis and Interpretation. Piscataway:IEEE, 2014:117-120. |