《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (10): 3114-3121.DOI: 10.11772/j.issn.1001-9081.2023101520
陈学斌1,2,3(), 单丽洋1,2,3, 郭如敏1,2,3
收稿日期:
2023-11-07
修回日期:
2024-01-02
接受日期:
2024-01-04
发布日期:
2024-01-19
出版日期:
2024-10-10
通讯作者:
陈学斌
作者简介:
陈学斌(1970—),男,河北唐山人,教授,博士,CCF杰出会员,主要研究方向:大数据安全、物联网安全、网络安全 chxb@ncst.edu.cn基金资助:
Xuebin CHEN1,2,3(), Liyang SHAN1,2,3, Rumin GUO1,2,3
Received:
2023-11-07
Revised:
2024-01-02
Accepted:
2024-01-04
Online:
2024-01-19
Published:
2024-10-10
Contact:
Xuebin CHEN
About author:
SHAN Liyang, born in 1997, M. S. candidate. Her research interests include data security, privacy protection.Supported by:
摘要:
在数字经济时代,数据发布是数据共享的重要环节。直方图数据发布是数据发布的常见方式,但它面临着隐私泄露的问题。为此,对基于差分隐私(DP)的直方图数据发布方法进行了研究。首先,介绍了DP和直方图的相关性质,以及近5年国内外针对静态数据集和流数据的直方图发布方法的研究,并讨论了静态数据下直方图分组数、分组方式、噪声误差和分组误差的均衡,以及隐私预算分配问题。其次,探讨了动态数据下数据采样、数据预测以及滑动窗口实现分组的问题;同时针对面向区间树结构的DP直方图发布方法,将原始数据与树结构进行转化,并讨论了树结构数据的加噪、基于树结构的优化、树结构的隐私预算的分配等;此外,还讨论了直方图发布数据的可用性和隐私性、查询范围和查询精度问题。最后,通过对相关算法进行对比分析,总结了各算法的优缺点,以及部分算法的定量分析比较及适用场景,展望了未来基于DP的直方图在不同数据场景中的研究方向。
中图分类号:
陈学斌, 单丽洋, 郭如敏. 基于差分隐私的直方图发布方法综述[J]. 计算机应用, 2024, 44(10): 3114-3121.
Xuebin CHEN, Liyang SHAN, Rumin GUO. Review of histogram publication methods based on differential privacy[J]. Journal of Computer Applications, 2024, 44(10): 3114-3121.
算法 | 原理 | 优点 | 缺点 |
---|---|---|---|
AHP[ | 加噪后排序 | 准确性高 | 排序成本高 |
R-G-I[ | 梯度回归、离群点问题 | 发布结果准确性高 | 仅对含有离群点数据集有效 |
文献[ | 动态规划,指数机制 | 发布精度高 | ε随机分配、分组数确定受限 |
APB[ | 隐私预算分配权重优化模型,自适应分配 | 可用性提高 | 有序数据集优势不明显 |
SSHP[ | 指数机制、盘赌抽样,抽样排序和层次划分 | 数据可用性高 | 人为设定2个阈值 |
BDPP[ | 关联隐私泄露量化机制,多指标决策 | 均衡直接与间接隐私 | 模型复杂繁琐,推广性差 |
HPHP[ | 约束推断,动态规划 | 发布精度高 | ε小,约束推断统计值相同 |
NHPDP[ | 经验分布函数构建,组距大小设置隐私预算 | 避免“重拖尾、零桶” | 分组数先验知识计算 |
HP-SDP[ | 哈希编码混洗应答,堆排列,二次规划 | 发布精度高 | 应用场景单调 |
IKEM[ | K-means与指数机制 | 数据可用性高 | 人为设定聚类中心数 |
表1 面向静态数据的差分隐私直方图发布算法
Tab. 1 Differential privacy histogram publishing algorithms for static data
算法 | 原理 | 优点 | 缺点 |
---|---|---|---|
AHP[ | 加噪后排序 | 准确性高 | 排序成本高 |
R-G-I[ | 梯度回归、离群点问题 | 发布结果准确性高 | 仅对含有离群点数据集有效 |
文献[ | 动态规划,指数机制 | 发布精度高 | ε随机分配、分组数确定受限 |
APB[ | 隐私预算分配权重优化模型,自适应分配 | 可用性提高 | 有序数据集优势不明显 |
SSHP[ | 指数机制、盘赌抽样,抽样排序和层次划分 | 数据可用性高 | 人为设定2个阈值 |
BDPP[ | 关联隐私泄露量化机制,多指标决策 | 均衡直接与间接隐私 | 模型复杂繁琐,推广性差 |
HPHP[ | 约束推断,动态规划 | 发布精度高 | ε小,约束推断统计值相同 |
NHPDP[ | 经验分布函数构建,组距大小设置隐私预算 | 避免“重拖尾、零桶” | 分组数先验知识计算 |
HP-SDP[ | 哈希编码混洗应答,堆排列,二次规划 | 发布精度高 | 应用场景单调 |
IKEM[ | K-means与指数机制 | 数据可用性高 | 人为设定聚类中心数 |
算法 | 误差 |
---|---|
AHP[ | |
APB[ | |
NHPDP[ | |
APS[ |
表2 直方图发布算法的分组误差
Tab. 2 Grouping errors of histogram publishing algorithms
算法 | 误差 |
---|---|
AHP[ | |
APB[ | |
NHPDP[ | |
APS[ |
算法 | 原理 | 优点 | 缺点 |
---|---|---|---|
SHP[ | 自适应抽样预测下一时刻,比较阈值大小 | 隐私预算少 | 随机抽样频率设定问题 |
DDHP[ | 比较L1、余弦和马氏距离选择最优测度 | 隐私预算分配少 | 数据量过大,效果不好 |
HPA-SW[ | 数据分块,区间近似估计 | 发布误差低 | 局部最优 |
IKFDP[ | 卡尔曼滤波,指数平滑改进突变性 | 数据可用性高 | 仅适用于含有突变数据集 |
APS[ | 近似计算预测 | 隐私预算少,数据可用性高 | 需要空间缓存数据 |
GGA[ | KL散度、贪婪群 | 数据可用性高 | 受更新率影响较大 |
ASDP-HPA[ | 时间衰减、自回归移动平均模型 | 误差少 | 分配隐私预算均分不适用 |
DPHP-DL[ | 动态数据流非等距直方图 | 隐私性和可用性高 | 时间复杂度较高 |
表3 面向流数据的差分隐私直方图数据发布算法
Tab. 3 Differential privacy histogram data publishing algorithm for streaming data
算法 | 原理 | 优点 | 缺点 |
---|---|---|---|
SHP[ | 自适应抽样预测下一时刻,比较阈值大小 | 隐私预算少 | 随机抽样频率设定问题 |
DDHP[ | 比较L1、余弦和马氏距离选择最优测度 | 隐私预算分配少 | 数据量过大,效果不好 |
HPA-SW[ | 数据分块,区间近似估计 | 发布误差低 | 局部最优 |
IKFDP[ | 卡尔曼滤波,指数平滑改进突变性 | 数据可用性高 | 仅适用于含有突变数据集 |
APS[ | 近似计算预测 | 隐私预算少,数据可用性高 | 需要空间缓存数据 |
GGA[ | KL散度、贪婪群 | 数据可用性高 | 受更新率影响较大 |
ASDP-HPA[ | 时间衰减、自回归移动平均模型 | 误差少 | 分配隐私预算均分不适用 |
DPHP-DL[ | 动态数据流非等距直方图 | 隐私性和可用性高 | 时间复杂度较高 |
算法 | 原理 | 优点 | 缺点 |
---|---|---|---|
LUE-DPtree[ | 异方差加噪 | 查询精度高 | 运行效率略差 |
LBLUE[ | 任意区间树、最优线性无偏估计 | 查询精度高、算法效率高 | 局部最优 |
CRTree[ | 伪完全k叉区间树 | 算法可行有效 | 小数据集优势不明显 |
RTP_MM[ | 对角矩阵 | 查询精度高 | 小数据集查询效率变化不明显 |
HQ_DPSAP[ | 历史查询、异方差加噪 | 支持任意区间计数查询 | 仅历史查询有规律的有效 |
CCDPSD[ | 异方差加噪、一致性约束 | 查询精度高、算法效率高 | 需人为设定分叉数和树高 |
HQ_RTPMM[ | 移动平均法预测查询范围 | 发布精度高 | 隐私预算无适合的划分 |
CA[ | 不需迭代 | 精度高、时间效率高 | 受数据集区间影响大 |
表4 面向区间树结构的差分隐私直方图发布算法
Tab. 4 Differential privacy histogram publishing algorithms oriented to interval tree structure
算法 | 原理 | 优点 | 缺点 |
---|---|---|---|
LUE-DPtree[ | 异方差加噪 | 查询精度高 | 运行效率略差 |
LBLUE[ | 任意区间树、最优线性无偏估计 | 查询精度高、算法效率高 | 局部最优 |
CRTree[ | 伪完全k叉区间树 | 算法可行有效 | 小数据集优势不明显 |
RTP_MM[ | 对角矩阵 | 查询精度高 | 小数据集查询效率变化不明显 |
HQ_DPSAP[ | 历史查询、异方差加噪 | 支持任意区间计数查询 | 仅历史查询有规律的有效 |
CCDPSD[ | 异方差加噪、一致性约束 | 查询精度高、算法效率高 | 需人为设定分叉数和树高 |
HQ_RTPMM[ | 移动平均法预测查询范围 | 发布精度高 | 隐私预算无适合的划分 |
CA[ | 不需迭代 | 精度高、时间效率高 | 受数据集区间影响大 |
1 | 王楠,马翊鸣,赵娟. 大数据安全与隐私保护技术研究[J]. 中国高新科技, 2022(21):52-54. |
WANG N, MA Y M, ZHAO J. Big data security and privacy protection technology research[J]. China High and New Technology, 2022(21): 52-54. | |
2 | SWEENEY L. k-anonymity: a model for protecting privacy[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10(5): 557-570. |
3 | MACHANAVAJJHALA A, KIFER D, GEHRKE J, et al. l‑diversity: privacy beyond k‑anonymity[J]. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1): No.3. |
4 | LI N, LI T, VENKATASUBRAMANIAN S. t-closeness: privacy beyond k-anonymity and l-diversity[C]// Proceedings of the IEEE 23rd International Conference on Data Engineering. Piscataway: IEEE, 2007: 106-115. |
5 | GENTRY C. Fully homomorphic encryption using ideal lattices[C]// Proceedings of the 41st Annual ACM Symposium on Theory of Computing. New York: ACM, 2009: 168-178. |
6 | STURGES H A. The choice of a class interval[J]. Journal of the American Statistical Association, 1926, 21(153): 65-66. |
7 | SCOTT D W. On optimal and data-based histograms[J]. Biometrika, 1979, 66(3): 605-610. |
8 | RUDEMO M. Empirical choice of histogram and kernel density estimators[J]. Scandinavian Journal of Statistics, 1982, 9(2): 65-78. |
9 | WANG X X, ZHANG J F. Histogram-kernel error and its application for bin width selection in histograms[J]. Acta Mathematicae Applicatae Sinica, English Series, 2012, 28(3):607-624. |
10 | DWORK C. Differential privacy[C]// Proceedings of the 2006 International Colloquium on Automata, Languages, and Programming, LNCS 4052. Berlin: Springer, 2006: 1-12. |
11 | DWORK C, NAOR M, PITASSI T, et al. Differential privacy under continual observation[C]// Proceedings of the 42nd ACM Symposium on Theory of Computing. New York: ACM, 2010: 715-724. |
12 | BKAKRIA A, TASIDOU A, CUPPENS-BOULAHIA N, et al. Optimal distribution of privacy budget in differential privacy[C]// Proceedings of the 2018 International Conference on Risks and Security of Internet and Systems, LNCS 11391. Cham: Springer, 2019: 222-236. |
13 | 何贤芒,王晓阳,陈华辉,等.差分隐私保护参数ε的选取研究[J]. 通信学报, 2015, 36(12):124-130. |
HE X M, WANG X Y, CHEN H H, et al. Study on choosing the parameter ε in differential privacy[J]. Journal on Communications, 2015, 36(12): 124-130. | |
14 | DWORK C, SMITH A. Differential privacy for statistics: what we know and what we want to learn[J]. Journal of Privacy and Confidentiality, 2010, 1(2): 135-154. |
15 | HAY M, RASTOGI V, MIKLAU G, et al. Boosting the accuracy of differentially private histograms through consistency[J]. Proceedings of the VLDB Endowment, 2010, 3(1/2): 1021-1032. |
16 | HU H, XU J, ON S T, et al. Privacy-aware location data publishing[J]. ACM Transactions on Database Systems, 2010, 35(3): No.18. |
17 | JAGADISH H V, KOUDAS N, MUTHUKRISHNANS, et al. Optimal histograms with quality guarantees[C]// Proceedings of the 24th International Conference on Very Large Data Bases Conference. San Francisco: Morgan Kaufmann Publishers Inc., 1998: 275-286. |
18 | ACS G, CASTELLUCCIA C, CHEN R. Differentially private histogram publishing through lossy compression[C]// Proceedings of the IEEE 12th International Conference on Data Mining. Piscataway: IEEE Press, 2012: 1-10. |
19 | ZHANG X, CHEN R, XU J, et al. Towards accurate histogram publication under differential privacy[C]// Proceedings of the 2014 SIAM International Conference on Data Mining. Philadelphia: SIAM, 2014: 587-595. |
20 | 徐文涛,李林森,钮佳超,等.一种基于桶重构的差分隐私直方图发布方法[J].通信技术,2019,52(2):409-417. |
XU W T, LI L S, NIU J C, et al. Differential privacy histogram publishing method based on bucket reconstruction[J]. Communications Technology, 2019, 52(2): 409-417. | |
21 | 张浩铭,刘田天,龙士工.优化结构下的差分隐私直方图发布[J].计算机仿真,2019,36(3):220-224. |
ZHANG H M, LIU T T, LONG S G. The histogram of the differential privacy protection under optimal structure is published[J]. Computer Simulation, 2019, 36(3): 220-224. | |
22 | 唐海霞,杨庚,白云璐.自适应差分隐私预算分配策略的直方图发布算法[J].计算机应用研究,2020,37(7):1952-1957. |
TANG H X, YANG G, BAI Y L. Histogram publishing algorithm based on adaptive privacy budget allocation strategy under differential privacy[J]. Application Research of Computers, 2020, 37(7): 1952-1957. | |
23 | 张润莲,叶志博,武小年.基于抽样排序和层次划分的直方图发布算法[J].计算机应用研究,2020,37(7):2123-2125. |
ZHANG R L, YE Z B, WU X N. Histogram publishing algorithm based on sampling sorting and hierarchical partitioning[J]. Application Research of Computers, 2020, 37(7): 2123-2125. | |
24 | 杨旭东,高岭,王海,等.一种面向直方图发布的均衡差分隐私保护方法[J].计算机学报,2020,43(8):1414-1432. |
YANG X D, GAO L, WANG H, et al. Balanced correlation differential privacy protection method for histogram publishing[J]. Chinese Journal of Computers, 2020, 43(8): 1414-1432. | |
25 | 李昆明,王超迁,倪巍伟,等.基于差分隐私的高精度直方图发布方法[J].计算机应用,2020,40(11):3242-3248. |
LI K M, WANG C Q, NI W W, et al. High-precision histogram publishing method based on differential privacy[J]. Journal of Computer Applications, 2020, 40(11): 3242-3248. | |
26 | 杨磊,郑啸,赵伟.基于差分隐私的非等距直方图发布方法[J].网络与信息安全学报,2020,6(3):39-49. |
YANG L, ZHENG X, ZHAO W. Non-equal-width histogram publishing method based on differential privacy[J]. Chinese Journal of Network and Information Security, 2020, 6(3): 39-49. | |
27 | 张啸剑,徐雅鑫,夏庆荣.基于混洗差分隐私的直方图发布方法[J].软件学报,2022,33(6):2348-2363. |
ZHANG X J, XU Y X, XIA Q R. Histogram publication under shuffled differential privacy[J]. Journal of Software, 2022, 33(6): 2348-2363. | |
28 | 张国兴,赵俊杰,杨杰.融合K-means与指数机制的直方图发布算法[J].科学技术创新,2022(21):92-95. |
ZHANG G X, ZHAO J J, YANG J. Histogram publishing algorithm integrating K-means and exponential mechanism[J]. Scientific and Technological Innovation, 2022(21): 92-95. | |
29 | 欧阳海滨,全永彬,高立群,等.基于混合遗传粒子群优化算法的层次路径规划方法[J].郑州大学学报(工学版),2020,41(4): 34-40. |
OUYANG H B, QUAN Y B, GAO L Q, et al. Hierarchical path planning method for mobile robots based on hybrid genetic particle swarm optimization algorithm[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(4): 34-40. | |
30 | 徐霜,万强,余琍. 基于学习理论的改进粒子群优化算法[J]. 郑州大学学报(工学版),2019,40(2):29-34. |
XU S, WAN Q, YU L. An improved particle swarm optimization algorithm based on learning theory[J]. Journal of Zhengzhou University (Engineering Science), 2019, 40(2): 29-34. | |
31 | RASTOGI V, NATH S. Differentially private aggregation of distributed time-series with transformation and encryption[C]// Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2010: 735-746. |
32 | CHAN T H H, LI M, SHI E, et al. Differentially private continual monitoring of heavy hitters from distributed streams[C]// Proceedings of the 2012 International Symposium on Privacy Enhancing Technologies, LNCS 7384. Berlin: Springer, 2012: 140-159. |
33 | CHAN T H H, SHI E, SONG D. Private and continual release of statistics[J]. ACM Transactions on Information and System Security, 2011, 14(3): No.26. |
34 | FRIEDMAN A, SHARFMAN I, KEREN D, et al. Privacy-preserving distributed stream monitoring[C]// Proceedings of the 2014 Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2014: 1-14. |
35 | 张啸剑,孟小峰.基于差分隐私的流式直方图发布方法[J].软件学报,2016,27(2):381-393. |
ZHANG X J, MENG X F. Streaming histogram publication method with differential privacy[J]. Journal of Software, 2016, 27(2): 381-393. | |
36 | 杨庚,夏春婷,白云璐.面向实时数据流的差分隐私直方图发布技术[J].南京邮电大学学报(自然科学版),2018,38(2):69-77. |
YANG G, XIA C T, BAI Y L. Algorithm for differential privacy histogram for real-time data flow[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2018, 38(2): 69-77. | |
37 | 莫磊,王修君,郑啸,等.有效的基于滑动窗口数据流直方图方法[J].计算机应用研究,2021,38(7):2085-2090. |
MO L, WANG X J, ZHENG X, et al. Efficient histogram method in data streams over sliding windows[J]. Application Research of Computers, 2021, 38(7): 2085-2090. | |
38 | 李恒春,樊伟麟,孟宁,等.符合差分隐私的流数据统计直方图发布[J].湘潭大学学报(自然科学版),2022,44(2): 72-79. |
LI H C, FAN W L, MENG N, et al. A histogram publishing method for stream data satisfying differential privacy[J]. Journal of Xiangtan University (Natural Science Edition), 2022, 44(2): 72-79. | |
39 | 王修君,莫磊,郑啸,等.面向数据流滑动窗口的自适应直方图发布算法[J].计算机科学,2022,49(10):344-352. |
WANG X J, MO L, ZHENG X, et al. Adaptive histogram publishing algorithm for sliding window of data stream[J]. Computer Science, 2022, 49(10): 344-352. | |
40 | GAO R, MA X. Dynamic data histogram publishing based on differential privacy[C]// Proceedings of the 16th IEEE International Symposium on Parallel and Distributed Processing with Applications. Piscataway: IEEE, 2018: 737-743. |
41 | LI Y, LI S. Research on differential private streaming histogram publication algorithm[C]// Proceedings of the 5th IEEE International Conference on Cloud Computing and Intelligence Systems. Piscataway: IEEE, 2018: 598-603. |
42 | CHEN Q, NI Z, ZHU X, et al. Differential privacy histogram publishing method based on dynamic sliding window[J]. Frontiers of Computer Science, 2023, 17: No.174809. |
43 | CAO J, XIAO Q, GHINITA G, et al. Efficient and accurate strategies for differentially-private sliding window queries[C]// Proceedings of the 16th International Conference on Extending Database Technology. New York: ACM, 2013: 191-202. |
44 | BOLOT J, FAWAZ N, MUTHUKRISHNAN S, et al. Private decayed predicate sums on streams[C]// Proceedings of the 16th International Conference on Database Theory. New York: ACM, 2013: 284-295. |
45 | 康健,吴英杰,黄泗勇,等.异方差加噪下的差分隐私直方图发布算法[J].计算机科学与探索,2016,10(6):786-798. |
KANG J, WU Y J, HUANG S Y, et al. Algorithm for differential privacy histogram publication with non-uniform private budget[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(6): 786-798. | |
46 | 吴英杰,陈鸿,王一蕾,等.面向任意区间树结构的差分隐私直方图发布算法[J].模式识别与人工智能,2015,28(12):1084-1092. |
WU Y J, CHEN H, WANG Y L, et al. A differentially private histogram publication algorithm for arbitrary range tree structure[J]. Pattern Recognition and Artificial Intelligence, 2015, 28(12): 1084-1092. | |
47 | 李丽,张琳,王汝传.基于动态区间树的差分隐私数据发布算法[J].南京邮电大学学报(自然科学版),2017,37(4):103-112. |
LI L, ZHANG L, WANG R C. Differential privacy data publishing algorithm based on a dynamic interval tree[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2017, 37(4): 103-112. | |
48 | 葛晨,吴英杰,孙岚.差分隐私流数据实时发布方法[J].计算机科学与探索,2018,12(11):1748-1757. |
GE C, WU Y J, SUN L. Real-time publishing method of differential privacy streaming data[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(11): 1748-1757. | |
49 | 吴英杰,张立群,康健,等.差分隐私流数据自适应发布算法[J].计算机研究与发展,2017,54(12):2805-2817. |
WU Y J, ZHANG L Q, KANG J, et al. An algorithm for differential privacy streaming data adaptive publication[J]. Journal of Computer Research and Development, 2017, 54(12): 2805-2817. | |
50 | 孙岚,康健,吴英杰,等.异方差加噪下差分隐私流数据发布一致性优化算法[J].清华大学学报(自然科学版),2019,59(3): 203-210. |
SUN L, KANG J, WU Y J, et al. Consistency optimization algorithm for differential privacy streaming data publication with non-uniform private budgets[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(3): 203-210. | |
51 | 吴英杰,黄鑫,葛晨,等.差分隐私流数据实时发布中的自适应参数优化[J].计算机科学,2019,46(9):99-105. |
WU Y J, HUANG X, GE C, et al. Adaptive parameter optimization for real-time differential privacy streaming data publication[J]. Computer Science, 2019, 46(9): 99-105. | |
52 | 贾俊杰,陈慧,马慧芳,等.差分隐私的查询一致性约束研究[J]. 计算机工程与科学,2020,42(1):71-79. |
JIA J J, CHEN H, MA H F, et al. Query consistency constraints of differential privacy[J]. Computer Engineering and Science, 2020, 42(1): 71-79. |
[1] | 张治政, 张啸剑, 王俊清, 冯光辉. 结合差分隐私与安全聚集的联邦空间数据发布方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2777-2784. |
[2] | 陈廷伟, 张嘉诚, 王俊陆. 面向联邦学习的随机验证区块链构建[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2770-2776. |
[3] | 王华华, 张旭, 李峰. 面向高速移动环境的二级信号检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1236-1241. |
[4] | 彭鹏, 倪志伟, 朱旭辉, 陈千. 改进萤火虫群算法协同差分隐私的干扰轨迹发布[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 496-503. |
[5] | 高瑞, 陈学斌, 张祖篡. 面向部分图更新的动态社交网络隐私发布方法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3831-3838. |
[6] | 徐雪冉, 杨庚, 黄喻先. 横向联邦学习中差分隐私聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 217-222. |
[7] | 黄硕, 李艳辉, 曹建秋. 本地化差分隐私下的频繁序列模式挖掘算法PrivSPM[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2057-2064. |
[8] | 陈少权, 蔡剑平, 孙岚. 动态梯度阈值裁剪的差分隐私生成对抗网络算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2065-2072. |
[9] | 尹春勇, 屈锐. 基于个性化差分隐私的联邦学习算法[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1160-1168. |
[10] | 王腾, 霍峥, 黄亚鑫, 范艺琳. 联邦学习中的隐私保护技术研究综述[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 437-449. |
[11] | 张宇, 蔡英, 崔剑阳, 张猛, 范艳芳. 卷积神经网络中基于差分隐私的动量梯度下降算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3647-3653. |
[12] | 田蕾, 葛丽娜. 基于差分隐私的广告推荐算法[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3346-3350. |
[13] | 刘帅, 蒋林, 李远成, 山蕊, 朱育琳, 王欣. 基于阵列处理器的最小均方误差检测算法并行设计与实现[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1524-1530. |
[14] | 王利娥, 李小聪, 刘红翼. 融合知识图谱和差分隐私的新闻推荐方法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1339-1346. |
[15] | 赵乐, 张恩, 秦磊勇, 李功丽. 基于区块链的多方隐私保护k-means聚类方案[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3801-3812. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||