1 |
邹艳珍,王敏,谢冰,等.基于大数据的软件项目知识图谱构造及问答方法[J]. 大数据,2021,7(1):22-36.
|
|
ZOU Y Z, WANG M, XIE B, et al. Software knowledge graph construction and Q&A technology based on big data [J]. Big Data Research, 2021,7(1):22-36.
|
2 |
彭鑫,陈驰,林云.基于上下文的智能化代码复用推荐[J].大数据,2021,7(1):37-47.
|
|
PENG X, CHEN C, LIN Y. Context-based intelligent recommendation for code reuse [J]. Big Data Research, 2021,7(1): 37-47.
|
3 |
伏广宇,李传艺,葛季栋,等.基于构建软件功能描述的可复用软件检索方法[J]. 应用科学学报, 2020, 38(5): 682-694.
|
|
FU G Y, LI C Y, GE J D, et al. Retrieving reusable software by constructing functional descriptions [J]. Journal of Applied Sciences, 2020,38(5): 682-694.
|
4 |
杨芙清,梅宏,李克勤. 软件复用与软件构件技术[J]. 电子学报, 1999, 27(2):68-75.
|
|
YANG F Q, MEI H, LI K Q. Software reuse and software component technology[J]. Acta Electronica Sinica,1999, 27(2):68-75.
|
5 |
丁铭,唐杰.从知识图谱到认知图谱:历史、发展与展望[J]. 中国计算机学会通讯, 2020,16(8): 11-18.
|
|
DING M, TANG J. From knowledge graph to cognitive graph: history, development, and outlook[J]. Communications of the CCF, 2020,16(8): 11-18.
|
6 |
人工智能之认知图谱[R]. 北京:清华大学人工智能研究院,2020.
|
|
Research report of cognitive graph [R]. Beijing: Tsinghua University. Institute for Artificial Intelligence, 2020.
|
7 |
EVANS J S. Heuristic and analytic processes in reasoning[J]. British Journal of Psychology, 1984, 75(4): 451-468.
|
8 |
LUO X, LIU L, YANG Y, et al. AliCoCo: Alibaba e-commerce cognitive concept net[C]// Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2020:313-327.
|
9 |
LI Y, WANG C, HAN F, et al. Mining evidences for named entity disambiguation[C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2013:1070-1078.
|
10 |
刘挺.从知识图谱到事理图谱[EB/OL]. (2017-11-15) [2023-08-10]. .
|
|
LIU T. From knowledge graph to event graph [EB/OL]. (2017-11-15) [2023-08-10]. .
|
11 |
RADINSKY K, DAVIDOVICH S, MARKOVITCH S. Learning causality for news events prediction[C]// Proceedings of the 21st International Conference on World Wide Web. New York: ACM, 2012:909-918.
|
12 |
DING X, ZHANG Y, LIU T, et al. Using structured events to predict stock price movement: an empirical investigation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014:1415-1425.
|
13 |
刘永生,廖军,李亚梦,等.从知识图谱到认知图谱及电信行业应用[J]. 信息通信技术, 2021, 15(3):48-54.
|
|
LIU Y S, LIAO J, LI Y M, et al. Advancement of knowledge graph and cognitive graph and applications in telecom industry [J]. Information and Communications Technologies, 2021,15(3):48-54.
|
14 |
DING M, ZHOU C, CHEN Q, et.al. Cognitive graph for multi-hop reading comprehension at scale[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 2694-2703.
|
15 |
柳景兴,王彬,毛维杨,等. 深空探测器任务规划认知图谱及多属性约束冲突检测[J]. 深空探测学报, 2023, 10(1):88-96.
|
|
LIU J X, WANG B, MAO W Y, et al. Cognitive graph for autonomous deep space mission planning and multi-constraints collision detection [J]. Journal of Deep Space Exploration, 2023,10(1):88-96.
|
16 |
倪晋超. 基于知识图谱推理的食品安全情报研判系统研究[D]. 北京:北方工业大学, 2022:16-42.
|
|
NI J C. Research on food safety information and judgment system based on knowledge graph reasoning [D]. Beijing: North China University of Technology, 2022:16-42.
|
17 |
FAGAN M E. Design and code inspections to reduce errors in program development[J]. IBM Systems Journal, 1976, 15(3): 182-211.
|
18 |
金芝,刘芳,李戈. 程序理解:现状与未来[J]. 软件学报, 2019, 30(1):110-126.
|
|
JIN Z, LIU F, LI G. Program comprehension: present and future[J]. Journal of Software, 2019, 30(1):110-126.
|
19 |
LU J, WEI Y, SUN X, et al. Interactive query reformulation for source-code search with word relations[J]. IEEE Access, 2018, 6: 75660-75668.
|
20 |
LV F, ZHANG H, LOU J-G, et al. CodeHow: effective code search based on API understanding and extended Boolean model [C]// Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2015:260-270.
|
21 |
滕昌志.基于数据驱动的学生程序代码推荐[D].哈尔滨:哈尔滨工业大学, 2019:12-27.
|
|
TENG C Z. Data-driven student code recommendations [D]. Harbin: Harbin Institute of Technology, 2019:12-27.
|
22 |
IYER S, KONSTAS I, CHEUNG A, et. al. Summarizing source code using a neural attention model [EB/OL]. [2023-05-12]..
|