《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (6): 1683-1698.DOI: 10.11772/j.issn.1001-9081.2023060852
• CCF第38届中国计算机应用大会 (CCF NCCA 2023) • 上一篇 下一篇
收稿日期:
2023-07-01
修回日期:
2023-10-26
接受日期:
2023-10-27
发布日期:
2023-11-07
出版日期:
2024-06-10
通讯作者:
孟繁军
作者简介:
赵雅娟(1999—),女,内蒙古呼和浩特人,硕士研究生,CCF会员,主要研究方向:教育大数据基金资助:
Yajuan ZHAO, Fanjun MENG(), Xingjian XU
Received:
2023-07-01
Revised:
2023-10-26
Accepted:
2023-10-27
Online:
2023-11-07
Published:
2024-06-10
Contact:
Fanjun MENG
About author:
ZHAO Yajuan, born in 1999, M. S. candidate. Her research interests include big data in education.Supported by:
摘要:
知识追踪(KT)是在线教育中一项基础且具有挑战性的任务,同时也是从学习者的学习历史中建立学习者知识状态模型的任务,可以帮助学习者更好地了解自己的知识状态,使教育者更好地了解学习者的学习情况。对在线教育学习者KT研究进行综述。首先,介绍KT的主要任务和发展历程;其次,从传统KT模型和深度学习KT模型两个方面展开叙述;再次,归纳总结相关数据集和评价指标,并汇总KT的相关应用;最后,总结KT现状,讨论它们的不足和未来发展方向。
中图分类号:
赵雅娟, 孟繁军, 徐行健. 在线教育学习者知识追踪综述[J]. 计算机应用, 2024, 44(6): 1683-1698.
Yajuan ZHAO, Fanjun MENG, Xingjian XU. Review of online education learner knowledge tracing[J]. Journal of Computer Applications, 2024, 44(6): 1683-1698.
参数 | 描述 |
---|---|
P(L0) | 第一次使用解决问题的技能之前,知识概念已经掌握的概率 |
P(T) | 在每次使用该技能时掌握知识概念的概率 |
P(G) | 如果知识概念未知,学习者猜测正确的概率 |
P(S) | 如果知识概念已知,学习者出错的概率 |
表1 BKT模型参数描述
Tab.1 Parameters description of BKT model
参数 | 描述 |
---|---|
P(L0) | 第一次使用解决问题的技能之前,知识概念已经掌握的概率 |
P(T) | 在每次使用该技能时掌握知识概念的概率 |
P(G) | 如果知识概念未知,学习者猜测正确的概率 |
P(S) | 如果知识概念已知,学习者出错的概率 |
KT模型 | 主要技术 | 特点 | 局限性 |
---|---|---|---|
BKT[ | 贝叶斯网络 | 可解释性较强 | 无法处理学习者在学习过程中的非线性变化 |
IRT[ | Logistic函数 | 适用于小数据集和稀疏数据集 | 依赖专家标记知识点与练习之间的映射关系 |
AFM[ | Logistic函数 | 处理较小的数据集时具有高效性 | 只能考虑单个知识点的学习过程 |
PFA[ | Logistic函数 | 考虑了知识水平、认知能力的影响 | 需要人工构造大量特征 |
KTM[ | Logistic函数 | 考虑了相关特征之间的相互作用 | 存在冷启动问题,需要大量训练数据, 可解释性弱 |
DKT[ | RNN/LSTM | 不需要手动提取特征 | 处理稀疏数据时存在无法泛化 |
DKVMN[ | 记忆网络 | 记忆矩阵存储学习者的历史信息, 能够有效地捕捉学习者知识状态的动态变化 | 存储空间的需求较高 |
SKVMN[ | LSTM、记忆网络 | 能自适应地选择重要的知识点和历史信息 | 对于一些比较简单的知识点或者不连续的 知识点,模型可能表现不佳 |
SAKT[ | 前馈网络、多头注意力机制 | 能自适应地对学习者的答题序列进行加权 | 对题目的先验知识依赖较强 |
AKT[ | 前馈网络、多头注意力机制 | 考虑了不同知识点之间的相互影响 | 如果学习者提供的背景信息不准确或不完整,模型的性能可能会受到影响 |
SAINT[ | 前馈网络、ED、 多头注意力机制 | 更好地考虑学习者的答题历史和答题习惯等因素 | 需要大量数据训练和调整, 可能不太适用数据量较小的场景 |
SAINT+[ | 前馈网络、ED、 多头注意力机制 | 可以灵活地处理不同类型的题目和答案, 具有一定的通用性 | 依赖大量的训练数据,对数据量较小的应用场景可能表现不佳 |
RKT[ | 前馈网络、多头注意力机 | 可以自动捕获相关知识点之间的依赖关系, 避免了人工定义先验知识的问题 | 对数据质量的要求较高 |
GKT[ | GNN | 可以处理多个知识点之间的依赖关系 | 构建合适的知识关系图需要一定的专业知识和经验 |
GIKT[ | GNN/RNN | 可以捕捉学习者与知识点之间的交互关系, 动态调整知识点之间的关联度 | 如果领域知识较复杂,图结构的构建和优化 可能存在一定困难 |
SKT[ | GNN | 用于多个学科领域,具有一定的通用性 | 对于不同学习者的知识结构,需要进行适当的个性化处理 |
JKT[ | GCN | 可以捕捉学习者、知识和题目之间的关系 | 依赖先前构建的知识图谱,如果知识点的关系发生变化,需要重新构建 |
Bi-CLKT[ | GCN | 采用对比学习的方式可以减少需要标记的数据量 | 依赖先前构建的知识图谱,如果知识点的关系发生变化,需要重新构建 |
EERNN[ | RNN/LSTM | 可自适应地学习每个学习者的特征和知识水平 | 复杂度较高,需要较大的计算资源,对数据的 依赖较强 |
EKT[ | 注意力机制、LSTM | 根据学习者的情况自适应地调整对不同知识点的关注程度 | 对学习的状态建模相对简单,无法考虑 学习者的情感、兴趣等因素对学习的影响 |
KPT[ | 因子分解机 | 能建模学习者的个体认知和习得特点 | 泛化能力较弱,可能难以适应不同学科、年级和类型的学习者 |
HawkesKT[ | 因子分解机 | 能建模稀疏的学习者行为 | 多个学习任务交错进行的情况可能会表现不佳 |
DGMN[ | GCN、记忆网络 | 能处理复杂知识结构 | 计算复杂度较高,数据需求较大 |
DKT-STDRL[ | CNN、双向LSTM | 同时提取学习者练习序列的时间和空间特征 | 可解释性方面存在一定的局限性 |
表2 常见KT模型对比
Tab.2 Comparison of common KT models
KT模型 | 主要技术 | 特点 | 局限性 |
---|---|---|---|
BKT[ | 贝叶斯网络 | 可解释性较强 | 无法处理学习者在学习过程中的非线性变化 |
IRT[ | Logistic函数 | 适用于小数据集和稀疏数据集 | 依赖专家标记知识点与练习之间的映射关系 |
AFM[ | Logistic函数 | 处理较小的数据集时具有高效性 | 只能考虑单个知识点的学习过程 |
PFA[ | Logistic函数 | 考虑了知识水平、认知能力的影响 | 需要人工构造大量特征 |
KTM[ | Logistic函数 | 考虑了相关特征之间的相互作用 | 存在冷启动问题,需要大量训练数据, 可解释性弱 |
DKT[ | RNN/LSTM | 不需要手动提取特征 | 处理稀疏数据时存在无法泛化 |
DKVMN[ | 记忆网络 | 记忆矩阵存储学习者的历史信息, 能够有效地捕捉学习者知识状态的动态变化 | 存储空间的需求较高 |
SKVMN[ | LSTM、记忆网络 | 能自适应地选择重要的知识点和历史信息 | 对于一些比较简单的知识点或者不连续的 知识点,模型可能表现不佳 |
SAKT[ | 前馈网络、多头注意力机制 | 能自适应地对学习者的答题序列进行加权 | 对题目的先验知识依赖较强 |
AKT[ | 前馈网络、多头注意力机制 | 考虑了不同知识点之间的相互影响 | 如果学习者提供的背景信息不准确或不完整,模型的性能可能会受到影响 |
SAINT[ | 前馈网络、ED、 多头注意力机制 | 更好地考虑学习者的答题历史和答题习惯等因素 | 需要大量数据训练和调整, 可能不太适用数据量较小的场景 |
SAINT+[ | 前馈网络、ED、 多头注意力机制 | 可以灵活地处理不同类型的题目和答案, 具有一定的通用性 | 依赖大量的训练数据,对数据量较小的应用场景可能表现不佳 |
RKT[ | 前馈网络、多头注意力机 | 可以自动捕获相关知识点之间的依赖关系, 避免了人工定义先验知识的问题 | 对数据质量的要求较高 |
GKT[ | GNN | 可以处理多个知识点之间的依赖关系 | 构建合适的知识关系图需要一定的专业知识和经验 |
GIKT[ | GNN/RNN | 可以捕捉学习者与知识点之间的交互关系, 动态调整知识点之间的关联度 | 如果领域知识较复杂,图结构的构建和优化 可能存在一定困难 |
SKT[ | GNN | 用于多个学科领域,具有一定的通用性 | 对于不同学习者的知识结构,需要进行适当的个性化处理 |
JKT[ | GCN | 可以捕捉学习者、知识和题目之间的关系 | 依赖先前构建的知识图谱,如果知识点的关系发生变化,需要重新构建 |
Bi-CLKT[ | GCN | 采用对比学习的方式可以减少需要标记的数据量 | 依赖先前构建的知识图谱,如果知识点的关系发生变化,需要重新构建 |
EERNN[ | RNN/LSTM | 可自适应地学习每个学习者的特征和知识水平 | 复杂度较高,需要较大的计算资源,对数据的 依赖较强 |
EKT[ | 注意力机制、LSTM | 根据学习者的情况自适应地调整对不同知识点的关注程度 | 对学习的状态建模相对简单,无法考虑 学习者的情感、兴趣等因素对学习的影响 |
KPT[ | 因子分解机 | 能建模学习者的个体认知和习得特点 | 泛化能力较弱,可能难以适应不同学科、年级和类型的学习者 |
HawkesKT[ | 因子分解机 | 能建模稀疏的学习者行为 | 多个学习任务交错进行的情况可能会表现不佳 |
DGMN[ | GCN、记忆网络 | 能处理复杂知识结构 | 计算复杂度较高,数据需求较大 |
DKT-STDRL[ | CNN、双向LSTM | 同时提取学习者练习序列的时间和空间特征 | 可解释性方面存在一定的局限性 |
数据集 | 数据集子集 | 问题数 | 知识概念数 | 学习者数 | 练习 记录数 | 下载链接 |
---|---|---|---|---|---|---|
ASSISTments | ASSISTments2009 | 26 688 | 123 | 4 217 | 346 860 | https://sites.google.com/site/assistmentsdata/home/ 2009-2010-assistment-data |
ASSISTments2012 | 17 999 | 265 | 46 674 | 6 123 270 | https://sites.google.com/site/assistmentsdata/datasets/ 2012-13-school-data-with-affect | |
ASSISTments2015 | 85 | 100 | 19 917 | 708 631 | https://sites.google.com/site/assistmentsdata/datasets/ 2015-assistments-skill-builder-data | |
ASSISTments2017 | 3 162 | 102 | 1 709 | 942 816 | https://sites.google.com/view/assistmentsdatamining | |
STATICS | 1 224 | 335 | 361 092 | https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507 | ||
Junyi Academy | 722 | 41 | 247 606 | 25 925 992 | https://www.kaggle.com/datasets/junyiacademy/ learning-activity-public-dataset-by-junyi-academy | |
Simulated-5 (Synthetic) | 50 | 5 | 4 000 | 200 000 | https://github.com/chrispiech/DeepKnowledgeTracing/tree/ master/data/synthetic | |
KDDCup | Algebra 2005-2006 | 1 084 | 112 | 575 | 813 661 | https://pslcdatashop.web.cmu.edu/KDDCup/ |
Algebra 2006-2007 | 90 831 | 523 | 1 840 | 2 289 726 | ||
Bridge to Algebra | 19 258 | 493 | 1 146 | 3 686 871 | ||
EdNet | KT1 | 13 169 | 188 | 784 309 | 95 293 926 | https://drive.google.com/file/d/ 1AmGcOs5U31wIIqvthn9ARqJMrMTFTcaw/view |
KT2 | 13 169 | 188 | 297 444 | 56 360 602 | https://drive.google.com/file/d/ 1qQQshbzyULW5RjMi7u-IhUr2dT_6uMXA/view | |
KT3 | 13 169 | 293 | 297 915 | 89 270 654 | https://drive.google.com/file/d/ 1TVyGIWU1Mn3UCjjeD6bcZ57YspByUV7-/view | |
KT4 | 13 169 | 293 | 297 915 | 131 441 538 | https://drive.google.com/file/d/ 1HHZwpeqMSowWhgEu0URBQQ3FizR9o9mT/view | |
NeurIPS 2020 Education Challenge | Tasks 1&2 | 27 613 | 118 971 | 15 867 850 | https://eedi.com/projects/neurips-education-challenge | |
Tasks 3&4 | 948 | 4 918 | 1 382 727 |
表3 实验数据集基本信息
Tab.3 Basic information about experiment datasets
数据集 | 数据集子集 | 问题数 | 知识概念数 | 学习者数 | 练习 记录数 | 下载链接 |
---|---|---|---|---|---|---|
ASSISTments | ASSISTments2009 | 26 688 | 123 | 4 217 | 346 860 | https://sites.google.com/site/assistmentsdata/home/ 2009-2010-assistment-data |
ASSISTments2012 | 17 999 | 265 | 46 674 | 6 123 270 | https://sites.google.com/site/assistmentsdata/datasets/ 2012-13-school-data-with-affect | |
ASSISTments2015 | 85 | 100 | 19 917 | 708 631 | https://sites.google.com/site/assistmentsdata/datasets/ 2015-assistments-skill-builder-data | |
ASSISTments2017 | 3 162 | 102 | 1 709 | 942 816 | https://sites.google.com/view/assistmentsdatamining | |
STATICS | 1 224 | 335 | 361 092 | https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507 | ||
Junyi Academy | 722 | 41 | 247 606 | 25 925 992 | https://www.kaggle.com/datasets/junyiacademy/ learning-activity-public-dataset-by-junyi-academy | |
Simulated-5 (Synthetic) | 50 | 5 | 4 000 | 200 000 | https://github.com/chrispiech/DeepKnowledgeTracing/tree/ master/data/synthetic | |
KDDCup | Algebra 2005-2006 | 1 084 | 112 | 575 | 813 661 | https://pslcdatashop.web.cmu.edu/KDDCup/ |
Algebra 2006-2007 | 90 831 | 523 | 1 840 | 2 289 726 | ||
Bridge to Algebra | 19 258 | 493 | 1 146 | 3 686 871 | ||
EdNet | KT1 | 13 169 | 188 | 784 309 | 95 293 926 | https://drive.google.com/file/d/ 1AmGcOs5U31wIIqvthn9ARqJMrMTFTcaw/view |
KT2 | 13 169 | 188 | 297 444 | 56 360 602 | https://drive.google.com/file/d/ 1qQQshbzyULW5RjMi7u-IhUr2dT_6uMXA/view | |
KT3 | 13 169 | 293 | 297 915 | 89 270 654 | https://drive.google.com/file/d/ 1TVyGIWU1Mn3UCjjeD6bcZ57YspByUV7-/view | |
KT4 | 13 169 | 293 | 297 915 | 131 441 538 | https://drive.google.com/file/d/ 1HHZwpeqMSowWhgEu0URBQQ3FizR9o9mT/view | |
NeurIPS 2020 Education Challenge | Tasks 1&2 | 27 613 | 118 971 | 15 867 850 | https://eedi.com/projects/neurips-education-challenge | |
Tasks 3&4 | 948 | 4 918 | 1 382 727 |
模型 | 数据集 | ||||||||
---|---|---|---|---|---|---|---|---|---|
ASSISTments | STATICS | Junyi | Synthetic | KDDCup | EdNet | ||||
2009 | 2012 | 2015 | 2005—2006 | 2006—2007 | |||||
BKT[ | 0.651 0 | 0.623 0 | 0.611 0 | 0.642 0 | |||||
IRT[ | 0.751 0 | 0.743 0 | 0.672 0 | 0.806 0 | |||||
AFM[ | 0.610 0 | 0.707 0 | 0.706 0 | ||||||
PFA[ | 0.703 0 | 0.670 0 | 0.689 0 | 0.706 0 | |||||
KTM[ | 0.818 6 | ||||||||
DKT[ | 0.860 0 | 0.850 0 | |||||||
DKVMN[ | 0.815 7 | 0.726 8 | 0.828 4 | 0.827 3 | |||||
SKVMN[ | 0.836 3 | 0.748 4 | 0.848 5 | 0.826 7 | 0.840 0 | ||||
SAKT[ | 0.848 0 | 0.854 0 | 0.853 0 | 0.832 0 | |||||
AKT[ | 0.834 6 | 0.782 8 | |||||||
SAINT[ | 0.781 1 | ||||||||
SAINT+[ | 0.791 4 | ||||||||
RKT[ | 0.793 0 | 0.860 0 | |||||||
GKT[ | 0.723 0 | 0.769 0 | |||||||
GIKT[ | 0.789 6 | 0.775 4 | 0.752 3 | ||||||
SKT[ | 0.746 0 | 0.908 0 | |||||||
JKT[ | 0.798 0 | 0.765 0 | 0.856 0 | ||||||
Bi-CLKT[ | 0.857 0 | 0.765 0 | 0.865 0 | ||||||
PEBG[ | 0.830 0 | 0.770 0 | |||||||
EKT[ | 0.773 2 | 0.802 4 | |||||||
HawkesKT[ | 0.763 0 | 0.768 0 | |||||||
DGMN[ | 0.861 0 | 0.864 0 | 0.859 0 | 0.834 0 | |||||
DKT-STDRL[ | 0.959 1 | 0.999 6 | 0.949 9 | 0.948 2 |
表4 常见KT模型在不同数据集上的AUC结果
Tab.4 AUC results of common KT models on different datasets
模型 | 数据集 | ||||||||
---|---|---|---|---|---|---|---|---|---|
ASSISTments | STATICS | Junyi | Synthetic | KDDCup | EdNet | ||||
2009 | 2012 | 2015 | 2005—2006 | 2006—2007 | |||||
BKT[ | 0.651 0 | 0.623 0 | 0.611 0 | 0.642 0 | |||||
IRT[ | 0.751 0 | 0.743 0 | 0.672 0 | 0.806 0 | |||||
AFM[ | 0.610 0 | 0.707 0 | 0.706 0 | ||||||
PFA[ | 0.703 0 | 0.670 0 | 0.689 0 | 0.706 0 | |||||
KTM[ | 0.818 6 | ||||||||
DKT[ | 0.860 0 | 0.850 0 | |||||||
DKVMN[ | 0.815 7 | 0.726 8 | 0.828 4 | 0.827 3 | |||||
SKVMN[ | 0.836 3 | 0.748 4 | 0.848 5 | 0.826 7 | 0.840 0 | ||||
SAKT[ | 0.848 0 | 0.854 0 | 0.853 0 | 0.832 0 | |||||
AKT[ | 0.834 6 | 0.782 8 | |||||||
SAINT[ | 0.781 1 | ||||||||
SAINT+[ | 0.791 4 | ||||||||
RKT[ | 0.793 0 | 0.860 0 | |||||||
GKT[ | 0.723 0 | 0.769 0 | |||||||
GIKT[ | 0.789 6 | 0.775 4 | 0.752 3 | ||||||
SKT[ | 0.746 0 | 0.908 0 | |||||||
JKT[ | 0.798 0 | 0.765 0 | 0.856 0 | ||||||
Bi-CLKT[ | 0.857 0 | 0.765 0 | 0.865 0 | ||||||
PEBG[ | 0.830 0 | 0.770 0 | |||||||
EKT[ | 0.773 2 | 0.802 4 | |||||||
HawkesKT[ | 0.763 0 | 0.768 0 | |||||||
DGMN[ | 0.861 0 | 0.864 0 | 0.859 0 | 0.834 0 | |||||
DKT-STDRL[ | 0.959 1 | 0.999 6 | 0.949 9 | 0.948 2 |
1 | 国务院. 国务院关于印发新一代人工智能发展规划的通知[EB/OL]. [2023-04-20]. . |
Council State. Circular of the State Council on the issuance of the development plan for the new generation of artificial intelligence [EB/OL]. [2023-04-20]. . | |
2 | 中华人民共和国教育部. 教育部关于印发《教育信息化2.0行动计划》的通知[EB/OL]. [2023-04-20]. |
’s Republic of China. Notice of the Ministry of Education on issuing the action plan for Education Informatization 2.0 [EB/OL]. [2023-04-20]. | |
3 | 国务院. 中共中央、国务院印发《中国教育现代化2035》[EB/OL]. [2023-04-19]. [EB/OL]. [2023-04-19]. ) |
4 | CORBETT A T, ANDERSON J R. Knowledge tracing: modeling the acquisition of procedural knowledge[J]. User Modelling and User-Adapted Interaction, 1995, 4: 253-278. |
5 | WULF J, BLOHM I, LEIMEISTER J M, et al. Massive open online courses [J]. Business and Information Systems Engineering, 2014, 6: 111-114. |
6 | ANDERSON J R, BOYLE C F, REISER B J. Intelligent tutoring systems [J]. Science, 1985, 228(4698): 456-462. |
7 | MONGKHONVANIT K, KANOPKA K, LANG D. Deep knowledge kracing and engagement with MOOCs [C]// Proceedings of the 9th International Conference on Learning Analytics and Knowledge. New York: ACM, 2019: 340-342. |
8 | WANG Z, ZHU J, LI X, et al. Structured knowledge tracing models for student assessment on Coursera [C]// Proceedings of the Third (2016) ACM Conference on Learning @ Scale. New York: ACM, 2016: 209-212. |
9 | PARDOS Z, BERGNER Y, SEATON D, et al. Adapting Bayesian knowledge tracing to a massive open online course in edX[C/OL]//Proceedings of the 6th International Conference on Educational Data Mining. 2013[2023-05-30]. . |
10 | 吴昊, 徐行健, 孟繁军. 课程资源的融合知识图谱多任务特征推荐算法[J]. 计算机工程与应用, 2021, 57(21): 132-139. |
WU H, XU X J, MENG F J.Knowledge graph-assisted multi-task feature-based course recommendation algorithm[J]. Computer Engineering and Applications, 2021, 57(21): 132-139. | |
11 | 李建伟,武佳惠,姬艳丽.面向自适应学习的个性化学习路径推荐[J].现代教育技术, 2023, 33(1): 108-117. |
LI J W, WU J H, JI Y L.Personalized learning path recommendation oriented to adaptive learning[J]. Modern Educational Technology, 2023, 33(1): 108-117. | |
12 | 刘放,徐行健,孟繁军,等. 大规模测评数据驱动的个性化评价模型设计与实施[J]. 计算机教育, 2022(4): 138-144. |
LIU F, XU X J, MENG F J,et al. Design and implementation of personalized evaluation model driven by large-scale assessment data [J]. Computer Education, 2022(4): 138-144 | |
13 | 郑佩芸. 基于深度知识追踪的大学英语智适应学习系统构建初探[J]. 外语电化教学, 2023(1): 53-56,112. |
ZHENG P Y. A preliminary study on the construction of a smart adaptive learning system for college English using deep knowledge tracing[J]. Technology Enhanced Foreign Language Education, 2023(1): 53-56,112. | |
14 | LIU Q, SHEN S, HUANG Z, et al. A survey of knowledge tracing [EB/OL]. [2023-04-20]. . |
15 | BAKER R S J d, CORBETT A T, ALEVEN V. More accurate student modeling through contextual estimation of slip and guess probabilities in Bayesian knowledge tracing [M]// Proceedings of the 9th International Conference on Intelligent Tutoring Systems. Berlin: Springer, 2008: 406-415. |
16 | PAVLIK JP I, CEN H, KOEDINGER K R. Performance factors analysis: a new alternative to knowledge tracing [C]// Proceedings of the 2009 International Conference on Artificial Intelligence in Education: Building Learning Systems that Care: from Knowledge Representation to Affective Modelling. New York: ACM, 2009: 531-538. |
17 | CEN H, KOEDINGER K, JUNKER B. Learning factors analysis: a general method for cognitive model evaluation and improvement [C]// Proceedings of the 8th International Conference on Intelligent Tutoring Systems.Berlin: Springer, 2006: 164-175. |
18 | J-J VIE, KASHIMA H. Knowledge tracing machines: factorization machines for knowledge tracing[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 750-757. |
19 | PARDOS Z A, HEFFERNAN N T. Modeling individualization in a Bayesian networks implementation of knowledge tracing[C]// Proceedings of the 18th International Conference on User Modeling, Adaptation, and Personalization. Berlin: Springer, 2010: 255-266. |
20 | YUDELSON M V, KOEDINGER K R, GORDON G J. Individualized Bayesian knowledge tracing models[C]//Proceedings of the 16th International Conference on Artificial Intelligence in Education.Berlin: Springer, 2013: 171-180. |
21 | PARDOS Z A, HEFFERNAN N T. KT-IDEM: introducing item difficulty to the knowledge tracing model [C]// Proceedings of the 19th International Conference on User Modeling, Adaption and Personalization. Berlin: Springer, 2011: 243-254. |
22 | PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing [C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 505-513. |
23 | WILLIAMS R J, ZIPSER D. A learning algorithm for continually running fully recurrent neural networks [J]. Neural Computation, 1989, 1(2): 270-280. |
24 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
25 | ZHANG J, SHI X, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]// Proceedings of the 26th International Conference on World Wide Web. New York:ACM, 2017: 765-774. |
26 | PANDEY S, KARYPIS G. A self-attentive model for knowledge tracing [C]// Proceedings of the 12th International Conference on Educational Data Mining. Montréal: International Educational Data Mining Society, 2019:384-389. |
27 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. |
28 | WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. |
29 | SHEN S, LIU Q, CHEN E, et al. Convolutional knowledge tracing: modeling individualization in student learning process [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1857-1860. |
30 | LIU Y, YANG Y, CHEN X, et al. Improving knowledge tracing via pre-training question embeddings [C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2021: 1577-1583. |
31 | LIU Q, HUANG Z, YIN Y, et al. EKT: exercise-aware knowledge tracing for student performance prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(1): 100-115. |
32 | LUO R, LIU F, LIANG W, et al. DAGKT: difficulty and attempts boosted graph-based knowledge tracing [C]// Proceedings of the 29th International Conference on Neural Information Processing. Cham: Springer, 2022: 255-266. |
33 | LALWANI A, AGRAWAL S. What does time tell? Tracing the forgetting curve using deep knowledge tracing [M]// Proceedings of the 20th International Conference on Artificial Intelligence in Education. Cham: Springer, 2019: 158-162. |
34 | KÄSER T, KLINGLER S, SCHWING A G, et al. Dynamic Bayesian networks for student modeling [J]. IEEE Transactions on Learning Technologies, 2017, 10(4): 450-462. |
35 | LIN C, CHI M. Intervention-BKT: incorporating instructional interventions into Bayesian knowledge tracing [C]// Proceedings of the 13th International Conference on Intelligent Tutoring Systems. Cham: Springer, 2016: 208-218. |
36 | VAN DER LINDEN W J, HAMBLETON R K. Item response theory: brief history, common models, and extensions [M]// VAN DER LINDEN W J, HAMBLETON R K. Handbook of Modern Item Response Theory. New York: Springer, 1997: 1-28. |
37 | CEN H, KOEDINGER K, JUNKER B. Comparing two IRT models for conjunctive skills[C]// Proceedings of the 9th International Conference on Intelligent Tutoring Systems. Cham: Springer, 2008: 796-798. |
38 | LYU L, WANG Z, YUN H, et al. DKT-STDRL: spatial and temporal representation learning enhanced deep knowledge tracing for learning performance prediction[EB/OL]. (2023-02-15) [2023-04-20]. . |
39 | GRAVES A, WAYNE G, REYNOLDS M, et al. Hybrid computing using a neural network with dynamic external memory [J]. Nature, 2016, 538(7626): 471-476. |
40 | MILLER A, FISCH A, DODGE J, et al. Key-value memory networks for directly reading documents [C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsberg: ACL, 2016: 1400-1409. |
41 | SANTORO A, BARTUNOV S, BOTVINICK M, et al. Meta-learning with memory-augmented neural networks[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 1842-1850. |
42 | ABDELRAHMAN G, WANG Q. Knowledge tracing with sequential key-value memory networks[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 175-184. |
43 | WANG X, MEI X, HUANG Q, et al. Fine-grained learning performance prediction via adaptive sparse self-attention networks [J]. Information Sciences, 2021, 545: 223-240. |
44 | GHOSH A, HEFFERNAN N, LAN A S. Context-aware attentive knowledge tracing [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 2330-2339. |
45 | CHOI Y, LEE Y, CHO J, et al. Towards an appropriate query, key, and value computation for knowledge tracing[C]// Proceedings of the 7th ACM Conference on Learning @ Scale. New York: ACM, 2020: 341-344. |
46 | SHIN D, SHIM Y, YU H, et al. SAINT+: integrating temporal features for EdNet correctness prediction [C]// Proceedings of the 11th International Learning Analytics and Knowledge Conference. New York:ACM, 2021: 490-496. |
47 | PANDEY S, SRIVASTAVA J. RKT: Relation-aware self-attention for knowledge tracing [C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1205-1214. |
48 | NAKAGAWA H, IWASAWA Y, MATSUO Y. Graph-based knowledge tracing: modeling student proficiency using graph neural network[C]// Proceedings of the 2019 IEEE/WIC/ACM International Conference on Web Intelligence. Piscataway: IEEE, 2019: 156-163. |
49 | GARDNER M W, DORLING S R. Artificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciences [J]. Atmospheric Environment, 1998, 32(14/15): 2627-2636. |
50 | CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [EB/OL].(2014-12-11)[2023-04-20].. |
51 | YANG Y, SHEN J, QU Y, et al. GIKT: a graph-based interaction model for knowledge tracing [C]// Proceedings of the 2020 European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2021: 299-315. |
52 | TONG S, LIU Q, HUANG W, et al. Structure-based knowledge tracing: an influence propagation view [C]// Proceedings of the 2020 IEEE International Conference on Data Mining. Piscataway: IEEE, 2020: 541-550. |
53 | ROYER J M. Theories of the transfer of learning [J]. Educational Psychologist, 1979, 14(1): 53-69. |
54 | SONG X, LI J, TANG Y, et al. JKT: a joint graph convolutional network based deep knowledge tracing [J]. Information Sciences, 2021, 580: 510-523. |
55 | SONG X, LI J, LEI Q, et al. Bi-CLKT: bi-graph contrastive learning based knowledge tracing [J]. Knowledge-Based Systems, 2022, 241: 108274. |
56 | ZHANG M, ZHU X, ZHANG C, et al. Multi-factors aware dual-attentional knowledge tracing [C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 2588-2597. |
57 | SU Y, LIU Q, LIU Q, et al. Exercise-enhanced sequential modeling for student performance prediction [C]// Proceedings of the 32d AAAI Conference on Artificial Intelligence. Menlo Park:AAAI Press, 2018: 2435-2443. |
58 | TONG H, WANG Z, ZHOU Y, et al. HGKT: introducing hierarchical exercise graph for knowledge tracing [EB/OL]. [2023-04-20].. |
59 | GAN W, SUN Y, PENG X, et al. Modeling learner’s dynamic knowledge construction procedure and cognitive item difficulty for knowledge tracing[J]. Applied Intelligence, 2020, 50(11): 3894-3912. |
60 | NAGATANI K, ZHANG Q, SATO M, et al. Augmenting knowledge tracing by considering forgetting behavior[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3101-3107. |
61 | CHEN Y, LIU Q, HUANG Z, et al. Tracking knowledge proficiency of students with educational priors [C]// Proceedings of the 2017 ACM International Conference on Information and Knowledge Management. New York: ACM, 2017: 989-998. |
62 | HUANG Z, LIU Q, CHEN Y, et al. Learning or forgetting? A dynamic approach for tracking the knowledge proficiency of students [J]. ACM Transactions on Information Systems, 2020, 38(2): No. 19. |
63 | WANG C, MA W, ZHANG M, et al. Temporal cross-effects in knowledge tracing [C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 517-525. |
64 | ABDELRAHMAN G, WANG Q. Deep graph memory networks for forgetting-robust knowledge tracing[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 7844-7855. |
65 | SHEN S, HUANG Z, LIU Q, et al. Assessing student’s dynamic knowledge state by exploring the question difficulty effect [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 427-437. |
66 | LONG T, LIU Y, SHEN J, et al. Tracing knowledge state with individual cognition and acquisition estimation [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 173-182. |
67 | CHOI Y, LEE Y, SHIN D, et al. EdNet: a large-scale hierarchical dataset in education [C]// Proceedings of the 21st International Conference on Artificial Intelligence in Education. Cham: Springer, 2020: 69-73. |
68 | MINN S, YU Y, DESMARAIS M C, et al. Deep knowledge tracing and dynamic student classification for knowledge tracing [C]// Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 1182-1187. |
69 | CAI D, ZHANG Y, DAI B. Learning path recommendation based on knowledge tracing model and reinforcement learning[C]// Proceedings of the 2019 IEEE 5th International Conference on Computer and Communications. Piscataway: IEEE, 2019: 1881-1885. |
70 | TIAN X, LIU F. Capacity tracing-enhanced course recommendation in MOOCs [J]. IEEE Transactions on Learning Technologies, 2021, 14(3): 313-321. |
71 | HUO Y, WONG D F, NI L M, et al. Knowledge modeling via contextualized representations for LSTM-based personalized exercise recommendation [J]. Information Sciences, 2020, 523: 266-278. |
72 | 班启敏, 吴雯, 胡文心, 等. 基于学习者知识和性格的个性化课程推荐[J]. 华东师范大学学报(自然科学版), 2022(6): 87-101. |
BAN Q M, WU W, HU W X, et al. Personalized course recommendations based on a learner’s knowledge and personality[J]. Journal of East China Normal University (Natural Science), 2022(6): 87-101. | |
73 | CHEN C M, LEE H M, CHEN Y H. Personalized e-learning system using item response theory [J]. Computers & Education, 2005, 44(3): 237-255. |
74 | WANG S, XU Y, LI Q, et al. Learning path planning algorithm based on learner behavior analysis [C]// Proceedings of the 2021 4th International Conference on Big Data and Education. New York: ACM, 2021: 26-33. |
75 | 邹煜. 融合学习记忆过程的知识追踪在小学数学学业评价中的应用研究[D]. 北京: 中央民族大学, 2021:58. |
ZOU Y. The application of knowledge tracing model integrating learning and memory process in the evaluation of primary school mathematics [D]. Beijing: Minzu University of China, 2021:58. | |
76 | C-K YEUNG, D-Y YEUNG. Incorporating features learned by an enhanced deep knowledge tracing model for STEM/Non-STEM job prediction[J]. International Journal of Artificial Intelligence in Education, 2019, 29: 317-341. |
77 | SPAULDING S, BREAZEAL C. Affect and inference in Bayesian knowledge tracing with a robot tutor [C]// Proceedings of the 10th Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts. New York: ACM, 2015: 219-220. |
78 | KANTHARAJU P, ALDERFER K, ZHU J, et al. Tracing player knowledge in a parallel programming educational game[C]// Proceedings of the 14th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. Menlo Park:AAAI Press, 2018: 173-179. |
79 | HOOSHYAR D, HUANG Y-M, YANG Y. GameDKT: deep knowledge tracing in educational games [J]. Expert Systems with Applications, 2022, 196: 116670. |
80 | VASILYEVA E, PUURONEN S, PECHENIZKIY M, et al. Feedback adaptation in web-based learning systems[J]. International Journal of Continuing Engineering Education and Life-Long Learning, 2007, 17(4/5): 337-357. |
81 | WANG M, YANG Z-K, LIU S-Y, et al. Using feedback to improve learning: differentiating between correct and erroneous examples [C]// Proceedings of the 2015 International Symposium on Educational Technology. Piscataway: IEEE, 2015: 99-103. |
82 | WU J, HUANG Z, LIU Q, et al. Federated deep knowledge tracing[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 662-670. |
83 | LIU N, WANG Z, BARANIUK R, et al. Open-ended knowledge tracing for computer science education[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsberg: ACL, 2022: 3849-3862. |
84 | FISCHER G. User modeling in human-computer interaction [J]. User Modeling and User-Adapted Interaction, 2001, 11: 65-86. |
[1] | 邴雅星, 王阳萍, 雍玖, 白浩谋. 基于筛选学习网络的六自由度目标位姿估计算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1920-1926. |
[2] | 刘源泂, 何茂征, 黄益斌, 钱程. 基于ResNet50和改进注意力机制的船舶识别模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1935-1941. |
[3] | 吴锦富, 柳毅. 基于随机噪声和自适应步长的快速对抗训练方法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1807-1815. |
[4] | 王晓路, 千王菲. 基于双支路卷积网络的步态识别方法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1965-1971. |
[5] | 郭琳, 刘坤虎, 马晨阳, 来佑雪, 徐映芬. 基于感受野扩展残差注意力网络的图像超分辨率重建[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1579-1587. |
[6] | 盖彦辛, 闫涛, 张江峰, 郭小英, 陈斌. 基于时空注意力的空间关联三维形貌重建[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1570-1578. |
[7] | 李鑫, 孟乔, 皇甫俊逸, 孟令辰. 基于分离式标签协同学习的YOLOv5多属性分类[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1619-1628. |
[8] | 时旺军, 王晶, 宁晓军, 林友芳. 小样本场景下的元迁移学习睡眠分期模型[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1445-1451. |
[9] | 孙子文, 钱立志, 杨传栋, 高一博, 陆庆阳, 袁广林. 基于Transformer的视觉目标跟踪方法综述[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1644-1654. |
[10] | 杨先凤, 汤依磊, 李自强. 基于交替注意力机制和图卷积网络的方面级情感分析模型[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1058-1064. |
[11] | 王铂越, 李英祥, 钟剑丹. 基于改进Res-UNet的昼夜地基云图分割网络[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1310-1316. |
[12] | 万泽轩, 谢春丽, 吕泉润, 梁瑶. 基于依赖增强的分层抽象语法树的代码克隆检测[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1259-1268. |
[13] | 唐睿, 岳士博, 张睿智, 刘川, 庞川林. UAV协助下非正交多址接入使能的数据采集系统中能效优化机制[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1209-1218. |
[14] | 孙祥杰, 魏强, 王奕森, 杜江. 代码相似性检测技术综述[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1248-1258. |
[15] | 张鹏飞, 韩李涛, 冯恒健, 李洪梅. 基于注意力机制和全局特征优化的点云语义分割[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1086-1092. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||