《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (6): 1683-1698.DOI: 10.11772/j.issn.1001-9081.2023060852

• CCF第38届中国计算机应用大会 (CCF NCCA 2023) • 上一篇    下一篇

在线教育学习者知识追踪综述

赵雅娟, 孟繁军(), 徐行健   

  1. 内蒙古师范大学 计算机科学技术学院,呼和浩特 010022
  • 收稿日期:2023-07-01 修回日期:2023-10-26 接受日期:2023-10-27 发布日期:2023-11-07 出版日期:2024-06-10
  • 通讯作者: 孟繁军
  • 作者简介:赵雅娟(1999—),女,内蒙古呼和浩特人,硕士研究生,CCF会员,主要研究方向:教育大数据
    徐行健(1988—),男,安徽蚌埠人,副教授,博士,CCF会员,主要研究方向:教育大数据、生物信息学。
  • 基金资助:
    内蒙古自然科学基金资助项目(2023LHMS06011);内蒙古师范大学基本科研业务费专项(2022JBQN105);内蒙古自治区军民融合重点科研项目及软科学研究项目(JMRKX202201)

Review of online education learner knowledge tracing

Yajuan ZHAO, Fanjun MENG(), Xingjian XU   

  1. College of Computer Science and Technology,Inner Mongolia Normal University,Hohhot Inner Mongolia 010022,China
  • Received:2023-07-01 Revised:2023-10-26 Accepted:2023-10-27 Online:2023-11-07 Published:2024-06-10
  • Contact: Fanjun MENG
  • About author:ZHAO Yajuan, born in 1999, M. S. candidate. Her research interests include big data in education.
    XU Xingjian, born in 1988, Ph. D., associate professor. His research interests include big data in education, bioinformatics.
  • Supported by:
    Inner Mongolia Natural Science Foundation(2023LHMSS06011);Fundamental Research Funds for Inner Mongolia Normal University(2022JBQN105);Inner Mongolia Military-Civilian Integration Key Research Project and Soft Science Research Project(JMRKX202201)

摘要:

知识追踪(KT)是在线教育中一项基础且具有挑战性的任务,同时也是从学习者的学习历史中建立学习者知识状态模型的任务,可以帮助学习者更好地了解自己的知识状态,使教育者更好地了解学习者的学习情况。对在线教育学习者KT研究进行综述。首先,介绍KT的主要任务和发展历程;其次,从传统KT模型和深度学习KT模型两个方面展开叙述;再次,归纳总结相关数据集和评价指标,并汇总KT的相关应用;最后,总结KT现状,讨论它们的不足和未来发展方向。

关键词: 知识追踪, 学习者, 知识状态, 在线教育, 深度学习

Abstract:

Knowledge Tracing (KT) is a fundamental and challenging task in online education, and it involves the establishment of learner knowledge state model based on the learning history; by which learners can better understand their knowledge states, while teachers can better understand the learning situation of learners. The KT research for learners of online education was summarized. Firstly, the main tasks and historical progress of KT were introduced. Subsequently, traditional KT models and deep learning KT models were explained. Furthermore, relevant datasets and evaluation metrics were summarized, alongside a compilation of the applications of KT. In conclusion, the current status of knowledge tracing was summarized, and the limitations and future prospects for KT were discussed.

Key words: Knowledge Tracing (KT), learner, knowledge state, online education, deep learning

中图分类号: