1 |
YOU L, LI K-X, WANG J, et al. Massive MIMO transmission for LEO satellite communications [J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1851-1865.
|
2 |
NA Z, GUAN Q, FU C, et al. Channel model and throughput analysis for LEO OFDM satellite communication system [J]. International Journal of Future Generation Communication and Networking, 2013, 6(6): 109-122.
|
3 |
HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation [C]// Proceedings of the 2017 IEEE Wireless Communications and Networking Conference. Piscataway: IEEE, 2017: 1-6.
|
4 |
HADANI R, RAKIB S, MOLISCH A F, et al. Orthogonal Time Frequency Space (OTFS) modulation for millimeter-wave communications systems [C]// Proceedings of the 2017 IEEE MTT-S International Microwave Symposium. Piscataway: IEEE, 2017:681-683.
|
5 |
ZHOU X, GAO Z. Joint active user detection and channel estimation for grant-free NOMA-OTFS in LEO constellation Internet-of-Things [C]// Proceedings of the 2021 IEEE/CIC International Conference on Communications in China. Piscataway: IEEE, 2021: 735-740.
|
6 |
SHI J, HU J, YUE Y, et al. Outage probability for OTFS based downlink LEO satellite communication [J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3355-3360.
|
7 |
LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems [J]. IEEE Communications Magazine, 2014, 52(2): 186-195.
|
8 |
BJÖRNSON E, HOYDIS J, KOUNTOURIS M, et al. Massive MIMO systems with non-ideal hardware: energy efficiency, estimation, and capacity limits [J]. IEEE Transactions on Information Theory, 2014, 60(11): 7112-7139.
|
9 |
NGO H Q, ASHIKHMIN A, YANG H, et al. Cell-free massive MIMO versus small cells [J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1834-1850.
|
10 |
LI T, HE R, AI B, et al. OTFS modulation performance in a satellite-to-ground channel at sub-6-GHz and millimeter-wave bands with high mobility [J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 517-526.
|
11 |
ZHOU X, YING K, GAO Z, et al. Active terminal identification, channel estimation, and signal detection for grant-free NOMA-OTFS in LEO satellite Internet-of-Things [J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2847-2866.
|
12 |
BORA A S, PHAN K T, HONG Y. Spatially correlated MIMO-OTFS for LEO satellite communication systems [C]// Proceedings of the 2022 IEEE International Conference on Communications Workshops. Piscataway: IEEE, 2022: 723-728.
|
13 |
WANG X, SHEN W, XING C, et al. Joint Bayesian channel estimation and data detection for OTFS systems in LEO satellite communications [J]. IEEE Transactions on Communications, 2022, 70(7): 4386-4399.
|
14 |
SHEN B, WU Y, AN J, et al. Random access with massive MIMO-OTFS in LEO satellite communications [J]. IEEE Journal on Selected Areas in Communications, 2022, 40(10): 2865-2881.
|
15 |
TROPP J A, GIBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
|
16 |
WU X, MA S, YANG X. Tensor-based low-complexity channel estimation for mmWave massive MIMO-OTFS systems [J]. Journal of Communications and Information Networks, 2020, 5(3): 324-334.
|
17 |
SHEN W, DAI L, AN J, et al. Channel estimation for Orthogonal Time Frequency Space (OTFS) massive MIMO [J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4204-4217.
|
18 |
WANG J, KWON S, SHIM B. Generalized orthogonal matching pursuit [J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6202-6216.
|
19 |
张晓东,董唯光,汤旻安,等.压缩感知中基于广义Jaccard系数的gOMP重构算法[J].山东大学学报(理学版), 2017, 52(11): 23-28.
|
|
ZHANG X D, DONG W G, TANG M A, et al. gOMP reconstruction algorithm based on generalized Jaccard coefficients in compressed sensing [J]. Journal of Shandong University (Natural Science), 2017, 52(11): 23-28.
|
20 |
袁伟娜,严秋.基于压缩感知的FBMC/OQAM系统信道估计方法[J].通信学报,2019,40(12): 98-104.
|
|
YUAN W N, YAN Q. Channel estimation method based on compressed sensing for FBMC/OQAM system [J]. Journal on Communications, 2019, 40(12): 98-104.
|
21 |
贺新民,陈善恒,席纪江,等.一种稀疏度自适应OFDM系统信道估计算法 [J].信息通信,2020(8): 1-5.
|
|
HE X M, CHEN S H, XI J J, et al. Sparse adaptive algorithm for OFDM system channel estimation [J]. Information & Communications, 2020(8): 1-5.
|
22 |
SHI D, WANG W, YOU L, et al. Deterministic pilot design and channel estimation for downlink massive MIMO-OTFS systems in presence of the fractional Doppler [J]. IEEE Transactions on Wireless Communications, 2021, 20(11): 7151-7165.
|
23 |
KODHELI O, GUIDOTTI A, VANELLI-CORALLI A. Integration of satellites in 5G through LEO constellations [C]// Proceedings of the 2017 IEEE Global Communications Conference. Piscataway: IEEE, 2017: 1-6.
|
24 |
3GPP. Study on New Radio (NR) to support non-terrestrial networks: TR 38.811 (V15.3.0) Release 15 [S]. [S.l.]: 3GPP, 2020.
|
25 |
李金成.快速时变衰落信道的正交时频空传输关键技术研究 [D]. 成都:电子科技大学,2022: 21-25.
|
|
LI J C. Research on key technologies of orthogonal time frequency space transmission in fast time varying fading channels [D]. Chengdu: University of Electronic Science and Technology of China, 2022: 21-25.
|
26 |
邢旺,唐晓刚,周一青,等.面向OTFS的时延-多普勒域信道估计方法综述 [J].通信学报,2022,43(12): 188-201.
|
|
XING W, TANG X G, ZHOU Y Q, et al. Survey of channel estimation method in delay-Doppler domain for OTFS [J]. Journal on Communications, 2022, 43(12): 188-201.
|
27 |
杨海蓉,张成,丁大为,等.压缩传感理论与重构算法 [J].电子学报, 2011,39(1): 142-148.
|
|
YANG H R, ZHANG C, DING D W, et al. The theory of compressed sensing and reconstruction algorithm [J]. Acta Electronica Sinica, 2011, 39(1): 142-148.
|
28 |
申滨,吴和彪,崔太平,等.基于最优索引广义正交匹配追踪的非正交多址系统多用户检测 [J].电子与信息学报,2020,42(3): 621-628.
|
|
SHEN B, WU H B, CUI T P, et al. An optimal number of indices aided gOMP algorithm for multi-user detection in NOMA system [J]. Journal of Electronics & Information Technology, 2020, 42(3): 621-628.
|