《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (12): 3688-3698.DOI: 10.11772/j.issn.1001-9081.2023121817
• 2023 CCF中国区块链技术大会(CCF CBCC 2023) • 上一篇 下一篇
收稿日期:
2023-12-29
修回日期:
2024-01-12
接受日期:
2024-01-23
发布日期:
2024-04-19
出版日期:
2024-12-10
通讯作者:
姚中原
作者简介:
陈姿芊(1998—),女,浙江温州人,硕士研究生,主要研究方向:区块链基金资助:
Ziqian CHEN1, Kedi NIU1, Zhongyuan YAO1(), Xueming SI1,2
Received:
2023-12-29
Revised:
2024-01-12
Accepted:
2024-01-23
Online:
2024-04-19
Published:
2024-12-10
Contact:
Zhongyuan YAO
About author:
CHEN Ziqian, born in 1998, M. S. candidate. Her research interests include blockchain.Supported by:
摘要:
区块链技术凭借去中心化和加密等特性被用于物联网(IoT),然而传统区块链在IoT环境下存在扩展性差、延迟高、密码组件消耗高、共识计算复杂和数据存储规模大等问题。针对传统区块链在IoT设备中性能不佳的问题,对区块链轻量化技术进行综述。首先,将区块链架构分为单链结构和有向无环图(DAG)结构,并比较了两类区块链架构中的轻量化操作;其次,从迭代结构、压缩函数和硬件实现方面分析轻量级hash函数;再次,介绍共识算法和存储中的轻量化方案;最后,结合文献调研成果归纳总结区块链轻量化技术的设计思路,展望未来的研究方向。
中图分类号:
陈姿芊, 牛科迪, 姚中原, 斯雪明. 适用于物联网的区块链轻量化技术综述[J]. 计算机应用, 2024, 44(12): 3688-3698.
Ziqian CHEN, Kedi NIU, Zhongyuan YAO, Xueming SI. Review of blockchain lightweight technology applied to internet of things[J]. Journal of Computer Applications, 2024, 44(12): 3688-3698.
名称 | 结构 | 共识算法 | 特点 | 优点 |
---|---|---|---|---|
LBA[ | 单链 | 分层共识 | 节点分工:决策层、执行层; 采用基于DHT的树状结构网络;自定义事务模块 | 扩展性和容错性好;灵活性高,可根据场景 需求定义不同的区块链功能 |
Javaid等[ | 单链 | dPoW | 检查点机制 | 适用于大规模、高频率的交易 |
Seok等[ | 单链 | — | 节点分工:单元节点、存储节点;可选择轻量级 hash函数 | 可删除旧的分类账部分内容 |
LightChain[ | LB(单链) | SMP | UBOF | 使用LB代替整个区块进行广播,可以节省 高达90.55%的网络使用率;UBOF可以 卸载高达43.35%的存储资源消耗 |
IoTeX[ | 单链 | Roll-DPoS | 可转发的支付代码、HTLC、安全多方计算协议和 Pedersen密码学承诺 | 多链架构 |
Oktian等[ | 单链 | — | 节点分工:公证节点、代理节点 | 分层多链架构 |
Iota[ | tangle(DAG) | PoW (Proof of Work) | — | 高可伸缩性;无费用;近乎即时传输 |
Nano[ | 块格(DAG) | dPoS(delegated Proof of Stake) | 剪枝机制;账户链 | 交易吞吐量没有固定的上限; 所有历史数据都可删除 |
Hashgraph[ | DAG | 虚拟投票 | 支持嵌套的gossip协议 | 节点存储少量数据;交易快 |
Kriper[ | DAG | PoSt、信誉机制 | 分层:处理层和存储层; LMS签名 | 挖矿难度最低,出块速度高 |
Spacechain[ | DAG | 3D-GHOST | 三维账本架构;接触度CD衡量连通性; 节点分工:宏块、微块 | 克服了物联网中的异构性 |
Vegvisir[ | DAG | Proof of Witness | — | 可将部分DAG卸载到支持区块链 |
表1 不同区块链架构的比较
Tab. 1 Comparison of different blockchain architectures
名称 | 结构 | 共识算法 | 特点 | 优点 |
---|---|---|---|---|
LBA[ | 单链 | 分层共识 | 节点分工:决策层、执行层; 采用基于DHT的树状结构网络;自定义事务模块 | 扩展性和容错性好;灵活性高,可根据场景 需求定义不同的区块链功能 |
Javaid等[ | 单链 | dPoW | 检查点机制 | 适用于大规模、高频率的交易 |
Seok等[ | 单链 | — | 节点分工:单元节点、存储节点;可选择轻量级 hash函数 | 可删除旧的分类账部分内容 |
LightChain[ | LB(单链) | SMP | UBOF | 使用LB代替整个区块进行广播,可以节省 高达90.55%的网络使用率;UBOF可以 卸载高达43.35%的存储资源消耗 |
IoTeX[ | 单链 | Roll-DPoS | 可转发的支付代码、HTLC、安全多方计算协议和 Pedersen密码学承诺 | 多链架构 |
Oktian等[ | 单链 | — | 节点分工:公证节点、代理节点 | 分层多链架构 |
Iota[ | tangle(DAG) | PoW (Proof of Work) | — | 高可伸缩性;无费用;近乎即时传输 |
Nano[ | 块格(DAG) | dPoS(delegated Proof of Stake) | 剪枝机制;账户链 | 交易吞吐量没有固定的上限; 所有历史数据都可删除 |
Hashgraph[ | DAG | 虚拟投票 | 支持嵌套的gossip协议 | 节点存储少量数据;交易快 |
Kriper[ | DAG | PoSt、信誉机制 | 分层:处理层和存储层; LMS签名 | 挖矿难度最低,出块速度高 |
Spacechain[ | DAG | 3D-GHOST | 三维账本架构;接触度CD衡量连通性; 节点分工:宏块、微块 | 克服了物联网中的异构性 |
Vegvisir[ | DAG | Proof of Witness | — | 可将部分DAG卸载到支持区块链 |
密码算法 | 迭代 结构 | 压缩函数 | 摘要 位数 | Area/GE |
---|---|---|---|---|
Ascon-Hash (每周期1轮置换)[ | Sponge | SPN | 320 | 773 |
Ascon-Hash (每周期2轮置换)[ | Sponge | SPN | 320 | 1 290 |
PHOTON-Beetle-Hash (并行化)[ | Beetle | PHOTON256 | 256 | 998 |
PHOTON-Beetle-Hash (序列化)[ | Beetle | PHOTON256 | 256 | 602 |
Romulus[ | MDPH | Skinny-128/384+ | — | — |
Esch(并行化)[ | Sponge | Sparkle | 256 | 2 015 |
Esch(序列化)[ | Sponge | Sparkle | 256 | 1 530 |
Esch(混合)[ | Sponge | Sparkle | 256 | 1 656 |
Esch(并行化)[ | Sponge | Sparkle | 384 | 2 665 |
Esch(序列化)[ | Sponge | Sparkle | 384 | 1 762 |
Esch(混合)[ | Sponge | Sparkle | 384 | 1 931 |
Xoodyak (每周期1轮置换)[ | Sponge | Xoodoo | 128 | 678 |
Xoodyak (每周期2轮置换)[ | Sponge | Xoodoo | 128 | 1 192 |
Xoodyak (每周期3轮置换)[ | Sponge | Xoodoo | 128 | 1 701 |
LNHASH[ | Sponge | CA | 96 | 927 |
LNHASH[ | Sponge | CA | 128 | 1 224 |
LNHASH[ | Sponge | CA | 160 | 1 539 |
赵太飞等[ | Sponge | S盒代换、移位、 位排列 | 64 | 1 042 |
LNMNT[ | Sponge | NMNT | 128 | — |
ALIT-Hash[ | Beetle | Saturnin | 256 | — |
TJUILIK-Hash[ | Beetle | Saturnin | 256 | — |
表2 不同轻量级hash函数的比较
Tab. 2 Comparison of different lightweight hash functions
密码算法 | 迭代 结构 | 压缩函数 | 摘要 位数 | Area/GE |
---|---|---|---|---|
Ascon-Hash (每周期1轮置换)[ | Sponge | SPN | 320 | 773 |
Ascon-Hash (每周期2轮置换)[ | Sponge | SPN | 320 | 1 290 |
PHOTON-Beetle-Hash (并行化)[ | Beetle | PHOTON256 | 256 | 998 |
PHOTON-Beetle-Hash (序列化)[ | Beetle | PHOTON256 | 256 | 602 |
Romulus[ | MDPH | Skinny-128/384+ | — | — |
Esch(并行化)[ | Sponge | Sparkle | 256 | 2 015 |
Esch(序列化)[ | Sponge | Sparkle | 256 | 1 530 |
Esch(混合)[ | Sponge | Sparkle | 256 | 1 656 |
Esch(并行化)[ | Sponge | Sparkle | 384 | 2 665 |
Esch(序列化)[ | Sponge | Sparkle | 384 | 1 762 |
Esch(混合)[ | Sponge | Sparkle | 384 | 1 931 |
Xoodyak (每周期1轮置换)[ | Sponge | Xoodoo | 128 | 678 |
Xoodyak (每周期2轮置换)[ | Sponge | Xoodoo | 128 | 1 192 |
Xoodyak (每周期3轮置换)[ | Sponge | Xoodoo | 128 | 1 701 |
LNHASH[ | Sponge | CA | 96 | 927 |
LNHASH[ | Sponge | CA | 128 | 1 224 |
LNHASH[ | Sponge | CA | 160 | 1 539 |
赵太飞等[ | Sponge | S盒代换、移位、 位排列 | 64 | 1 042 |
LNMNT[ | Sponge | NMNT | 128 | — |
ALIT-Hash[ | Beetle | Saturnin | 256 | — |
TJUILIK-Hash[ | Beetle | Saturnin | 256 | — |
共识算法 | 区块 结构 | 共识方法 | 可扩展性 | 安全性 |
---|---|---|---|---|
PoBT | 单链 | 动态选举共识节点 | 高 | 中 |
PoT | 单链 | 指定时间内收集所有的 有效证明交易 | 高 | 高 |
PoAh | 单链 | 基于加密认证机制进行共识 | 高 | 中 |
Tree-chain | 平行链 | 基于共识代码收集交易信息 | 高 | 高 |
PoCh | 单链 | 基于两次机会获得区块记账权 | 高 | 高 |
表3 不同轻量级共识算法的比较
Tab. 3 Comparison of different lightweight consensus algorithms
共识算法 | 区块 结构 | 共识方法 | 可扩展性 | 安全性 |
---|---|---|---|---|
PoBT | 单链 | 动态选举共识节点 | 高 | 中 |
PoT | 单链 | 指定时间内收集所有的 有效证明交易 | 高 | 高 |
PoAh | 单链 | 基于加密认证机制进行共识 | 高 | 中 |
Tree-chain | 平行链 | 基于共识代码收集交易信息 | 高 | 高 |
PoCh | 单链 | 基于两次机会获得区块记账权 | 高 | 高 |
1 | REY A, PANETTI E, MAGLIO R, et al. Determinants in adopting the internet of things in the transport and logistics industry[J]. Journal of Business Research, 2021, 131: 584-590. |
2 | HU J, KAUR K, LIN H, et al. Intelligent anomaly detection of trajectories for IoT empowered maritime transportation systems [J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(2): 2382-2391. |
3 | CHANG Z, ZHOU Z Y, HAN Z, et al. Guest editorial: green industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5657-5659. |
4 | AL-TURJMAN F, NAWAZ M H, ULUSAR U D. Intelligence in the internet of medical things era: a systematic review of current and future trends[J]. Computer Communications, 2020, 150: 644-660. |
5 | AMMI M, ALARABI S, BENKHELIFA E. Customized blockchain-based architecture for secure smart home for lightweight IoT [J]. Information Processing and Management, 2021, 58(3): No.102482. |
6 | HOSSEIN MOTLAGH N, MOHAMMADREZAEI M, HUNT J, et al. Internet of Things (IoT) and the energy sector [J]. Energies, 2020, 13(2): No.494. |
7 | QIAN Y, WU D, BAO W, et al. The internet of things for smart cities: technologies and applications[J]. IEEE Network, 2019, 33(2): 4-5. |
8 | Statista. Number of Internet of Things (IoT) connected devices worldwide from 2019 to 2023, with forecasts from 2022 to 2030 [EB/OL].[2023-11-01].. |
9 | HASSIJA V, CHAMOLA V, SAXENA V, et al. A survey on IoT security: application areas, security threats, and solution architectures[J]. IEEE Access, 2019, 7: 82721-82743. |
10 | HADDADPAJOUH H, DEHGHANTANHA A, PARIZI R M, et al. A survey on internet of things security: requirements, challenges, and solutions[J]. Internet of Things, 2021, 14: No.100129. |
11 | OZYILMAZ K R, YURDAKUL A. Designing a blockchain-based IoT with Ethereum, Swarm, and LoRa: the software solution to create high availability with minimal security risks[J]. IEEE Consumer Electronics Magazine, 2019, 8(2): 28-34. |
12 | GOYAT R, KUMAR G, CONTI M, et al. BENIGREEN: blockchain-based energy-efficient privacy-preserving scheme for green IoTs[J]. IEEE Internet of Things Journal, 2023, 10(18): 16480-16493. |
13 | MISHRA R K, YADAV R K, NATH P. Blockchain driven access control architecture for the internet of things [J]. Multimedia Tools and Applications, 2023, 82(20): 31397-31421. |
14 | NAMANE S, DHAOU I BEN. Blockchain-based access control techniques for IoT applications [J]. Electronics, 2022, 11(14): No.2225. |
15 | KIM S K, KIM U M, HUH J H. A study on improvement of blockchain application to overcome vulnerability of IoT multiplatform security [J]. Energies, 2019, 12(3): No.402. |
16 | JUELS A, WEIS S A. Authenticating pervasive devices with human protocols[C]// Proceedings of the 2005 Annual International Cryptology Conference, LNCS 3621. Berlin: Springer, 2005: 293-308. |
17 | GAO N, HUO R, WANG S, et al. Sharding-hashgraph: a high-performance blockchain-based framework for industrial internet of things with hashgraph mechanism[J]. IEEE Internet of Things Journal, 2022, 9(18): 17070-17079. |
18 | 邓小鸿,朱年红,黄磊,等. LBA:轻量级区块链架构[J]. 计算机应用研究, 2021, 38(10):2904-2908, 2914. |
DENG X H, ZHU N H, HUANG L, et al. LBA: lightweight blockchain architecture[J]. Application Research of Computers, 2021, 38(10): 2904-2908, 2914. | |
19 | 朱年红. 轻量级区块链架构及应用研究[D]. 赣州:江西理工大学, 2021:25-38. |
ZHU N H. Research on lightweight blockchain architecture and application [D]. Ganzhou: Jiangxi University of Science and Technology, 2021:25-38. | |
20 | JAVAID U, SIKDAR B. A checkpoint enabled scalable blockchain architecture for industrial internet of things [J]. IEEE Transactions on Industrial Informatics, 2021, 17(11): 7679-7687. |
21 | SEOK B, PARK J, PARK J H. A lightweight hash-based blockchain architecture for industrial IoT [J]. Applied Sciences, 2019, 9(18): No.3740. |
22 | AUMASSON J P, HENZEN L, MEIER W, et al. QUARK: a lightweight hash [J]. Journal of Cryptology, 2013, 26: 313-339. |
23 | GUO J, PEYRIN T, POSCHMANN A. The PHOTON family of lightweight hash functions [C]// Proceedings of the 2011 Annual Cryptology Conference. Cham: Springer, 2011: 222-239. |
24 | BOGDANOV A, KNEZEVIC M, LEANDER G, et al. SPONGENT: the design space of lightweight cryptographic hashing[J]. IEEE Transactions on Computers, 2013, 62(10): 2041-2053. |
25 | LIU Y, WANG K, LIN Y, et al. LightChain: a lightweight blockchain system for industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3571-3581. |
26 | PARTIDA A, CRIADO R, ROMANCE M. Visibility graph analysis of IOTA and IoTeX price series: an intentional risk-based strategy to use 5G for IoT[J]. Electronics, 2021, 10(8): No.2282. |
27 | PARTIDA A, CRIADO R, ROMANCE M. Identity and access management resilience against intentional risk for blockchain-based IOT platforms[J]. Electronics, 2021, 10(3): No.378. |
28 | OKTIAN Y E, LEE S G, LEE H J. Hierarchical multi-blockchain architecture for scalable internet of things environment[J]. Electronics, 2020, 9(6): No.1050. |
29 | SILVANO W F, MARCELINO R. Iota tangle: a cryptocurrency to communicate internet-of-things data[J]. Future Generation Computer Systems, 2020, 112: 307-319. |
30 | POPOV S. The tangle[R/OL]. [2023-11-01].. |
31 | BENČIĆ F M, PODNAR ŽARKO I. Distributed ledger technology: blockchain compared to directed acyclic graph [C]// Proceedings of the IEEE 38th International Conference on Distributed Computing Systems. Piscataway: IEEE, 2018: 1569-1570. |
32 | ŽIVIĆ N, KADUŠIĆ E, KADUŠIĆ K. Directed acyclic graph as hashgraph: an alternative DLT to blockchains and tangles [C]// Proceedings of the 19th International Symposium INFOTEH-JAHORINA. Piscataway: IEEE, 2020: 1-4. |
33 | ROJO-RIVAS M I, DÍAZ-SÁNCHEZ D, ALMENAREZ F, et al. Kriper: a blockchain network with permissioned storage[J]. Future Generation Computer Systems, 2023, 138: 160-171. |
34 | DU M, WANG K, LIU Y, et al. Spacechain: a three-dimensional blockchain architecture for IoT security[J]. IEEE Wireless Communications, 2020, 27(3): 38-45. |
35 | KARLSSON K, JIANG W, WICKER S, et al. Vegvisir: a partition-tolerant blockchain for the internet-of-things [C]// Proceedings of the IEEE 38th International Conference on Distributed Computing Systems. Piscataway: IEEE, 2018: 1150-1158. |
36 | National Institute of Standards and Technology. Overview of lightweight cryptography[EB/OL]. [2023-11-01].. |
37 | DOBRAUNIG C, EICHLSEDER M, MENDEL F, et al. Ascon v1.2: lightweight authenticated encryption and hashing[J]. Journal of Cryptology, 2021, 34: No.33. |
38 | National Institute of Standards and Technology. Finalists of lightweight cryptography[EB/OL]. [2023-11-01].. |
39 | BERTONI G, DAEMEN J, PEETERS M, et al. Sponge functions[EB/OL]. [2023-11-01].. |
40 | MILES E, VIOLA E. Substitution-permutation networks, pseudorandom functions, and natural proofs[J]. Journal of the ACM, 2015, 62(6): No.46. |
41 | BAO Z, CHAKRABORTI A, DATTA N, et al. PHOTON-Beetle authenticated encryption[EB/OL]. [2023-11-01].. |
42 | CHAKRABORTI A, DATTA N, NANDI M, et al. Beetle family of lightweight and secure authenticated encryption ciphers[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018, 2018(2): 218-241. |
43 | GUO C, IWATA T, KHAIRALLAH M, et al. Romulus authenticated encryption/hash[EB/OL]. [2023-11-01].. |
44 | NAITO Y. Optimally indifferentiable double-block-length hashing without post-processing and with support for longer key than single block [C]// Proceedings of the 2019 International Conference on Cryptology and Information Security in Latin America, LNCS 11774. Cham: Springer, 2019: 65-85. |
45 | HIROSE S. Some plausible constructions of double-block-length hash functions[C]// Proceedings of the 2006 International Workshop on Fast Software Encryption, LNCS 4047. Berlin: Springer, 2006: 210-225. |
46 | BEIERLE C, JEAN J, KÖLBL S, et al. SKINNY-AEAD and SKINNY-Hash [J]. IACR Transactions on Symmetric Cryptology, 2020, 2020(S1): 88-131. |
47 | BEIERLE C, BIRYUKOV A, DOS SANTOS L C, et al. Lightweight AEAD and hashing using the sparkle permutation family [J]. IACR Transactions on Symmetric Cryptology, 2020, 2020(S1): 208-261. |
48 | DAEMEN J, HOFFERT S, PEETERS M, et al. Xoodyak, a lightweight cryptographic scheme[J]. IACR Transactions on Symmetric Cryptology, 2020, 2020(S1): 60-87. |
49 | ELSADEK I, AFTABJAHANI S, GARDNER D, et al. Hardware and energy efficiency evaluation of NIST lightweight cryptography standardization finalists[C]// Proceedings of the 2022 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2022: 133-137. |
50 | MADUSHAN H, SALAM I, ALAWATUGODA J. A review of the NIST lightweight cryptography finalists and their fault analyses[J]. Electronics, 2022, 11(24): No.4199. |
51 | LEE W K, JANG K, SONG G, et al. Efficient implementation of lightweight hash functions on GPU and quantum computers for IoT applications [J]. IEEE Access, 2022, 10: 59661-59674. |
52 | KHAN S, LEE W K, KARMAKAR A, et al. Area-time efficient implementation of NIST lightweight hash functions targeting IoT applications [J]. IEEE Internet of Things Journal, 2023, 10(9): 8083-8095. |
53 | ZHANG X, XU Q B, LI X W, et al. A lightweight hash function based on cellular automata for mobile network[C]// Proceedings of the 15th International Conference on Mobile Ad-Hoc and Sensor Networks. Piscataway: IEEE, 2019: 247-252. |
54 | 赵太飞,尹航,李永明. 基于Sponge结构的轻量级Hash函数设计[J].小型微型计算机系统, 2018, 39(12):2636-2639. |
ZHAO T F, YIN H, LI Y M. Design of lightweight Hash function based on Sponge structures[J]. Journal of Chinese Computer Systems, 2018, 39(12): 2636-2639. | |
55 | GONG Z, NIKOVA S, LAW Y W. KLEIN: a new family of lightweight block ciphers[C]// Proceedings of the 2011 International Workshop on Radio Frequency Identification: Security and Privacy Issues. Berlin: Springer, 2012: 1-18. |
56 | BERGER T P, D’HAYER J, MARQUET K, et al. The GLUON family: a lightweight hash function family based on FCSRs [C]// Proceedings of the 2012 International Conference on Cryptology in Africa, LNCS 7374. Berlin: Springer, 2012: 306-323. |
57 | HIROSE S, IDEGUCHI K, KUWAKADO H, et al. An AES based 256-bit hash function for lightweight applications: Lesamnta-LW[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2012, E95-A(1): 89-99. |
58 | WU W, WU S, ZHANG L, et al. LHash: a lightweight hash function [C]// Proceedings of the 2013 International Conference on Information Security and Cryptology, LNCS 8567. Cham: Springer, 2014: 291-308. |
59 | RUTTER N, BOUSSAKTA S, BYSTROV A. Assessment of the one-dimensional generalized new Mersenne number transform for security systems[C]// Proceedings of the IEEE 77th Vehicular Technology Conference. Piscataway: IEEE, 2013: 1-5. |
60 | AL-GAILANI M F, BOUSSAKTA S. Evaluation of one-dimensional NMNT for security applications [C]// Proceedings of the 7th International Symposium on Communication Systems, Networks and Digital Signal Processing. Piscataway: IEEE, 2010: 715-720. |
61 | NABEEL N, HABAEBI M H, ISLAM M R. LNMNT-new Mersenne number based lightweight crypto hash function for IoT[C]// Proceedings of the 8th International Conference on Computer and Communication Engineering. Piscataway: IEEE, 2021: 68-71. |
62 | NABEEL N, HABAEBI M H, ISLAM M D R. Security analysis of LNMNT-lightweight crypto hash function for IoT[J]. IEEE Access, 2021, 9: 165754-165765. |
63 | NABEEL N, HABAEBI M H, CHE MUSTAPHA N A, et al. IoT Light Weight (LWT) crypto functions [J]. International Journal of Interactive Mobile Technologies, 2019, 13(4): 117-129. |
64 | AL-AALI Y, BOUSSAKTA S. Lightweight hash function based on the new Mersenne number transform family[C]// Proceedings of the 7th International Conference on Frontiers of Signal Processing. Piscataway: IEEE, 2022: 179-183. |
65 | WINDARTA S, SURYADI S, RAMLI K, et al. Two new lightweight cryptographic hash functions based on Saturnin and Beetle for the internet of things[J]. IEEE Access, 2023, 11: 84074-84090. |
66 | CANTEAUT A, DUVAL S, LEURENT G, et al. Saturnin: a suite of lightweight symmetric algorithms for post-quantum security [J]. IACR Transactions on Symmetric Cryptology, 2020, 2020(S1): 160-207. |
67 | BISWAS S, SHARIF K, LI F, et al. PoBT: a lightweight consensus algorithm for scalable IoT business blockchain[J]. IEEE Internet of Things Journal, 2020, 7(3): 2343-2355. |
68 | AI Z, CUI W. A proof-of-transactions blockchain consensus protocol for large-scale IoT [J]. IEEE Internet of Things Journal, 2022, 9(11): 7931-7943. |
69 | PUTHAL D, MOHANTY S P, YANAMBAKA V P, et al. PoAh: a novel consensus algorithm for fast scalable private blockchain for large-scale IoT frameworks [EB/OL]. [2023-11-01].. |
70 | DORRI A, JURDAK R. Tree-chain: a fast lightweight consensus algorithm for IoT applications [C]// Proceedings of the IEEE 45th Conference on Local Computer Networks. Piscataway: IEEE, 2020: 369-372. |
71 | KARA M, LAOUID A, HAMMOUDEH M, et al. Proof of chance: a lightweight consensus algorithm for the internet of things[J]. IEEE Transactions on Industrial Informatics, 2022, 18(11): 8336-8345. |
72 | Blockchair. Bitcoin explorer[EB/OL]. [2023-11-01].. |
73 | Etherscan. The Ethereum blockchain explorer [EB/OL]. [2023-11-01]. . |
74 | XU Y, HUANG Y. Segment blockchain: a size reduced storage mechanism for blockchain[J]. IEEE Access, 2020, 8: 17434-17441. |
75 | KOKORIS-KOGIAS E, JOVANOVIC P, GASSER L, et al. OmniLedger: a secure, scale-out, decentralized ledger via sharding [C]// Proceedings of the 2018 Symposium on Security and Privacy. Piscataway: IEEE, 2018: 583-598. |
76 | ZAMANI M, MOVAHEDI M, RAYKOVA M. RapidChain: scaling blockchain via full sharding [C]// Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 931-948. |
77 | LUU L, NARAYANAN V, ZHENG C, et al. A secure sharding protocol for open blockchains [C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 17-30. |
78 | DANG H, DINH T T A, LOGHIN D, et al. Towards scaling blockchain systems via sharding[C]// Proceedings of the 2019 International Conference on Management of Data. New York: ACM, 2019: 123-140. |
79 | YIN B, LI J, WEI X. EBSF: node characteristics-based block allocation plans for efficient blockchain storage[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 4858-4871. |
80 | JIA D, XIN J, WANG Z, et al. Optimized data storage method for sharding-based blockchain[J]. IEEE Access, 2021, 9: 67890-67900. |
81 | ZHANG X, GRANNIS J, BAGGILI I, et al. Frameup: an incriminatory attack on Storj: a peer to peer blockchain enabled distributed storage system[J]. Digital Investigation, 2019, 29: 28-42. |
82 | VORICK D, CHAMPINE L. Sia: simple decentralized storage [R/OL]. [2023-11-01].. |
83 | BAUER D P. Filecoin [M]// Getting started with Ethereum: a step-by-step guide to becoming a blockchain developer. Berkeley, CA: Apress, 2022: 97-101. |
84 | BENISI N Z, AMINIAN M, JAVADI B. Blockchain-based decentralized storage networks: a survey [J]. Journal of Network and Computer Applications, 2020, 162: No.102656. |
85 | 张尧. 区块链的本地存储优化方法研究[D]. 成都:电子科技大学, 2020:18-33. |
ZHANG Y. Research on local storage optimization of blockchain [D]. Chengdu: University of Electronic Science and Technology of China, 2020:18-33. | |
86 | HEO J W, RAMACHANDRAN G S, DORRI A, et al. Blockchain storage optimisation with multi-level distributed caching[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 3724-3736. |
87 | CHEN X, ZHANG K, LIANG X, et al. HyperBSA: a high-performance consortium blockchain storage architecture for massive data [J]. IEEE Access, 2020, 8: 178402-178413. |
88 | EHMKE C, WESSLING F, FRIEDRICH C M. Proof-of-property: a lightweight and scalable blockchain protocol [C]// Proceedings of the 1st International Workshop on Emerging Trends in Software Engineering for Blockchain. New York: ACM, 2018: 48-51. |
89 | KOSHY P, BABU S, MANOJ B S. Sliding window blockchain architecture for internet of things[J]. IEEE Internet of Things Journal, 2020, 7(4): 3338-3348. |
90 | RAJENDRA Y, SAHU S, SUBRAMANIAN V, et al. Storage efficient blockchain models for constrained applications[J]. Cluster Computing, 2023, 26(4): 2163-2181. |
91 | KIM T, NOH J, CHO S. SCC: storage compression consensus for blockchain in lightweight IoT network[C]// Proceedings of the 2019 IEEE International Conference on Consumer Electronics. Piscataway: IEEE, 2019: 1-4. |
92 | LIN J H, MARCHESE E, TESSONE C J, et al. The weighted Bitcoin lightning network [EB/OL]. [2023-11-01].. |
93 | SINGH A, CLICK K, PARIZI R M, et al. Sidechain technologies in blockchain networks: an examination and state-of-the-art review[J]. Journal of Network and Computer Applications, 2020, 149: No.102471. |
94 | BOO E, KIM J, KO J. LiteZKP: lightening zero-knowledge proof-based blockchains for IoT and edge platforms[J]. IEEE Systems Journal, 2022, 16(1): 112-123. |
[1] | 陈廷伟, 张嘉诚, 王俊陆. 面向联邦学习的随机验证区块链构建[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2770-2776. |
[2] | 孙晓玲, 王丹辉, 李姗姗. 基于区块链的动态密文排序检索方案[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2500-2505. |
[3] | 张勇进, 徐健, 张明星. 面向轻量化的改进YOLOv7棉杂检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2271-2278. |
[4] | 黄河, 金瑜. 基于投票和以太坊智能合约的云数据审计方案[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2093-2101. |
[5] | 程小辉, 黄云天, 张瑞芳. 基于多尺度和加权坐标注意力的轻量化红外道路场景检测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1927-1934. |
[6] | 李皎, 张秀山, 宁远航. 降低跨分片交易比例的区块链分片方法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1889-1896. |
[7] | 宋霄罡, 张冬冬, 张鹏飞, 梁莉, 黑新宏. 面向复杂施工环境的实时目标检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1605-1612. |
[8] | 耿焕同, 刘振宇, 蒋骏, 范子辰, 李嘉兴. 基于改进YOLOv8的嵌入式道路裂缝检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1613-1618. |
[9] | 封筠, 毕健康, 霍一儒, 李家宽. 轻量化沥青路面裂缝图像分割网络PIPNet[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1520-1526. |
[10] | 赵莉朋, 郭兵. 基于BDLS的区块链共识改进算法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1139-1147. |
[11] | 陈美宏, 袁凌云, 夏桐. 基于主从多链的数据分类分级访问控制模型[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1148-1157. |
[12] | 高改梅, 张瑾, 刘春霞, 党伟超, 白尚旺. 基于区块链与CP-ABE策略隐藏的众包测试任务隐私保护方案[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 811-818. |
[13] | 黄子杰, 欧阳, 江德港, 郭彩玲, 李柏林. 面向牵引座焊缝表面质量检测的轻量型深度学习算法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 983-988. |
[14] | 马海峰, 李玉霞, 薛庆水, 杨家海, 高永福. 用于实现区块链隐私保护的属性基加密方案[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 485-489. |
[15] | 张成涵宇, 林钰哲, 谭程珂, 王俊帆, 顾烨婷, 董哲康, 高明煜. 基于轻量化YOLOv5的新型菜品识别网络[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 638-644. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||