《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (1): 325-336.DOI: 10.11772/j.issn.1001-9081.2023121827
        
                    
            车文博1, 王建华1( ), 郑翔1, 吴恭兴1, 张舜2, 王浩铸1
), 郑翔1, 吴恭兴1, 张舜2, 王浩铸1
                  
        
        
        
        
    
收稿日期:2024-01-02
									
				
											修回日期:2024-04-02
									
				
											接受日期:2024-04-07
									
				
											发布日期:2024-04-19
									
				
											出版日期:2025-01-10
									
				
			通讯作者:
					王建华
							作者简介:车文博(1999—),男,山东威海人,硕士研究生,主要研究方向:无人水面艇控制、视觉检测定位与导航;基金资助:
        
                                                                                                                                                            Wenbo CHE1, Jianhua WANG1( ), Xiang ZHENG1, Gongxing WU1, Shun ZHANG2, Haozhu WANG1
), Xiang ZHENG1, Gongxing WU1, Shun ZHANG2, Haozhu WANG1
			  
			
			
			
                
        
    
Received:2024-01-02
									
				
											Revised:2024-04-02
									
				
											Accepted:2024-04-07
									
				
											Online:2024-04-19
									
				
											Published:2025-01-10
									
			Contact:
					Jianhua WANG   
							About author:CHE Wenbo, born in 1999, M. S. candidate. His research interests include control of unmanned surface vehicle, visual detection positioning and navigation.Supported by:摘要:
针对无人艇(USV)在地下封闭水体中卫星定位信号缺失、通信受限、环境光线弱等问题,提出一种地下封闭水体内多USV协同的视觉定位方法。首先,设计一种艇载光源合作标志物,并根据艇身结构与应用场景对标志物结构进行优化;其次,采用单目视觉采集标志物图像,并求取特征点的图像坐标;再次,根据摄像机成像模型,基于合作标志物特征点的空间坐标及其对应的图像坐标之间的关系,通过改进直接线性变换方法求解相邻艇间的相对位置;然后,利用前后艇的摄像机进行艇间对视,并通过最小方差算法,融合根据前后艇摄像机图像求解所得的相对位置,以提高相对定位精度;最后,利用场景中已知的绝对坐标,获得各无人艇的绝对位置。仿真实验对影响定位误差的因素进行分析,并把所提方法与传统直接线性变换方法进行对比。结果表明,随着距离的增加,所提方法求解优势更趋明显,在距离15 m时求解的位置方差稳定在0.2 m2以内,验证了所提方法的准确性。静态实验结果表明,所提方法能将相对误差稳定在10.0%以内;地下河道内的动态实验结果表明,所提方法求解的绝对定位的航行轨迹达到与卫星定位相当的精度,验证了所提方法的可行性。
中图分类号:
车文博, 王建华, 郑翔, 吴恭兴, 张舜, 王浩铸. 地下封闭水体内多无人艇协同的视觉定位方法[J]. 计算机应用, 2025, 45(1): 325-336.
Wenbo CHE, Jianhua WANG, Xiang ZHENG, Gongxing WU, Shun ZHANG, Haozhu WANG. Cooperative visual positioning method of multiple unmanned surface vehicles in subterranean closed water body[J]. Journal of Computer Applications, 2025, 45(1): 325-336.
| 序号 | N | Lz1/m | Lz2/m | Lz3/m | |
|---|---|---|---|---|---|
| 1 | 6 | 0.10 | 0.25 | 20.00 | |
| 2 | 6 | 0.15 | 0.20 | 6.00 | |
| 3 | 6 | 0.10 | 0.30 | 15.00 | |
| 4 | 6 | 0.15 | 0.25 | 10.00 | |
| 5 | 8 | 0.10 | 0.25 | 0.60 | 0.60 | 
| 6 | 8 | 0.10 | 0.20 | 0.45 | 0.80 | 
| 7 | 8 | 0.10 | 0.40 | 0.20 | 0.40 | 
| 8 | 8 | 0.08 | 0.22 | 0.55 | 0.20 | 
| 9 | 8 | 0.05 | 0.20 | 0.50 | 0.50 | 
| 10 | 8 | 0.10 | 0.25 | 0.25 | 4.00 | 
表1 标志物结构参数优化
Tab. 1 Optimization of marker structure parameters
| 序号 | N | Lz1/m | Lz2/m | Lz3/m | |
|---|---|---|---|---|---|
| 1 | 6 | 0.10 | 0.25 | 20.00 | |
| 2 | 6 | 0.15 | 0.20 | 6.00 | |
| 3 | 6 | 0.10 | 0.30 | 15.00 | |
| 4 | 6 | 0.15 | 0.25 | 10.00 | |
| 5 | 8 | 0.10 | 0.25 | 0.60 | 0.60 | 
| 6 | 8 | 0.10 | 0.20 | 0.45 | 0.80 | 
| 7 | 8 | 0.10 | 0.40 | 0.20 | 0.40 | 
| 8 | 8 | 0.08 | 0.22 | 0.55 | 0.20 | 
| 9 | 8 | 0.05 | 0.20 | 0.50 | 0.50 | 
| 10 | 8 | 0.10 | 0.25 | 0.25 | 4.00 | 
| 位置序号 | 均值/m | 方差/m2 | 相对误差/% | ||||
|---|---|---|---|---|---|---|---|
| 1 | 6.65 | 6.54 | 6.61 | 0.02 | 0.03 | 0.01 | 1.6 | 
| 2 | 8.03 | 7.84 | 7.95 | 0.06 | 0.07 | 0.03 | 2.1 | 
| 3 | 9.42 | 9.14 | 9.30 | 0.21 | 0.26 | 0.11 | 3.5 | 
| 4 | 10.20 | 11.44 | 10.59 | 0.25 | 0.55 | 0.18 | 4.0 | 
| 5 | 10.97 | 13.75 | 11.73 | 0.72 | 1.93 | 0.50 | 6.0 | 
| 6 | 11.77 | 15.10 | 12.48 | 0.72 | 2.62 | 0.55 | 5.9 | 
| 7 | 12.55 | 16.46 | 13.13 | 1.77 | 10.32 | 1.56 | 9.5 | 
| 8 | 13.44 | 17.33 | 14.43 | 1.82 | 5.29 | 1.51 | 8.5 | 
表2 静态实验求解结果
Tab. 2 Solution results of static experiments
| 位置序号 | 均值/m | 方差/m2 | 相对误差/% | ||||
|---|---|---|---|---|---|---|---|
| 1 | 6.65 | 6.54 | 6.61 | 0.02 | 0.03 | 0.01 | 1.6 | 
| 2 | 8.03 | 7.84 | 7.95 | 0.06 | 0.07 | 0.03 | 2.1 | 
| 3 | 9.42 | 9.14 | 9.30 | 0.21 | 0.26 | 0.11 | 3.5 | 
| 4 | 10.20 | 11.44 | 10.59 | 0.25 | 0.55 | 0.18 | 4.0 | 
| 5 | 10.97 | 13.75 | 11.73 | 0.72 | 1.93 | 0.50 | 6.0 | 
| 6 | 11.77 | 15.10 | 12.48 | 0.72 | 2.62 | 0.55 | 5.9 | 
| 7 | 12.55 | 16.46 | 13.13 | 1.77 | 10.32 | 1.56 | 9.5 | 
| 8 | 13.44 | 17.33 | 14.43 | 1.82 | 5.29 | 1.51 | 8.5 | 
| 1 | 杨一烽,杜炯,张欣.国内地下式污水处理厂的发展现状和关键技术分析[J].净水技术, 2021, 40(10): 101-106. | 
| YANG Y F, DU J, ZHANG X. Development status and key technology analysis of Underground WasteWater Treatment Plants (UWWTPs) at home [J]. Water Purification Technology, 2021, 40(10): 101-106. | |
| 2 | 李滨.智能巡检机器人系统在地下式污水处理厂的运用[J].自动化应用, 2020(4): 77-79. | 
| LI B. Application of intelligent inspection robot system in underground sewage treatment plant [J]. Automation Application, 2020(4): 77-79. | |
| 3 | WANG X, SONG X, DU L. Review and application of unmanned surface vehicle in China [C]// Proceedings of the 5th International Conference on Transportation Information and Safety. Piscataway: IEEE, 2019: 1476-1481. | 
| 4 | ZHEN W, SCHERER S. Estimating the localizability in tunnel-like environments using LiDAR and UWB [C]// Proceedings of the 2019 International Conference on Robotics and Automation. Piscataway: IEEE, 2019: 4903-4908. | 
| 5 | TAGLIABUE A, TORDESILLAS J, CAI X, et al. LION: lidar-inertial observability-aware navigator for vision-denied environments [C]// Proceedings of the 2020 International Symposium on Experimental Robotics, SPAR 19. Cham: Springer, 2021: 380-390. | 
| 6 | 杨港顺.基于UWB信号的地下遮蔽空间信道建模和定位研究[D].北京:北京邮电大学, 2022: 9-24. | 
| YANG G S. Research on channel modeling and localization of UWB signal in the underground space [D]. Beijing: Beijing University of Posts and Telecommunications, 2022: 9-24. | |
| 7 | 赵冬青,畅雅雯,单彦虎,等.双目测量系统的室内定位与重建[J].激光杂志, 2022, 43(1): 19-23. | 
| ZHAO D Q, CHANG Y W, SHAN Y H, et al. Indoor positioning and reconstruction of the binocular measurement system [J]. Laser Journal, 2022, 43(1): 19-23. | |
| 8 | 何红坤,王宁,张富宇,等.水面无人艇单目视觉伺服自主控制研究综述[J].中国舰船研究, 2024, 19(1): 15-28. | 
| HE H K, WANG N, ZHANG F Y, et al. Review of research on monocular visual servo-based autonomous control of unmanned surface vehicles [J]. Chinese Journal of Ship Research, 2024, 19(1): 15-28. | |
| 9 | 王榆钦.弱光照环境下的视觉定位技术研究[D].厦门:厦门大学, 2020: 11-21. | 
| WANG Y Q. Research on visual positioning technology under low illumination environment [D]. Xiamen: Xiamen University, 2020: 11-21. | |
| 10 | ALZUHIRI M, LI Z, RAO A, et al. IMU-assisted robotic structured light sensing with featureless registration under uncertainties for pipeline inspection [J]. NDT and E International, 2023, 139: No.102936. | 
| 11 | ZHANG D, YANG G, JI J, et al. Pose measurement and motion estimation of non-cooperative satellite based on spatial circle feature [J]. Advances in Space Research, 2023, 71(3): 1721-1734. | 
| 12 | 赵连军.基于目标特征的单目视觉位置姿态测量技术研究[D].成都:中国科学院研究生院(中国科学院光电技术研究所), 2014: 2-53. | 
| ZHAO L J. Research on mono-vision pose measurement based on features of target [D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences), 2014: 2-53. | |
| 13 | 赵丽科.单目视觉的刚体运动目标位姿测量方法研究[D].武汉:武汉大学, 2018: 14-41. | 
| ZHAO L K. Research on measurement method of rigid object position and orientation based on monocular vision [D]. Wuhan: Wuhan University, 2018: 14-41. | |
| 14 | 王保丰,李广云,陈继华,等.航天器交会对接中测量靶标的两种设计方法[J].宇航学报, 2008, 29(1): 162-166. | 
| WANG B F, LI G Y, CHEN J H, et al. Two methods of coded targets used in rendezvous and docking [J]. Journal of Astronautics, 2008, 29(1): 162-166. | |
| 15 | 吕耀宇.空间合作目标单目视觉位姿测量技术研究[D].长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018: 23-61. | 
| LYU Y Y. Research on mono-vision pose measurement for space cooperative target [D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2018: 23-61. | |
| 16 | ABDEL-AZIZ Y I, KARARA H M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry [J]. Photogrammetric Engineering and Remote Sensing, 2015, 81(2): 103-107. | 
| 17 | 吴福朝,胡占义. PnP问题的线性求解算法[J].软件学报, 2003, 14(3): 682-688. | 
| WU F C, HU Z Y. A linear method for the PnP problem [J]. Journal of Software, 2003, 14(3): 682-688. | |
| 18 | 王平,周雪峰,安爱民,等.一种鲁棒且线性的PnP问题求解方法[J].仪器仪表学报, 2020, 41(9): 271-280. | 
| WANG P, ZHOU X F, AN A M, et al. Robust and linear solving method for Perspective-n-Point problem [J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 271-280. | |
| 19 | 何帅民,陈皓,王振宇.基于PnP算法的单目视觉位移测量方法[J].新技术新工艺, 2023(6): 46-52. | 
| HE S M, CHEN H, WANG Z Y. Displacement measurement method of monocular vision based on PnP algorithm [J]. New Technology and New Process, 2023(6): 46-52. | |
| 20 | 李占旗,高继东,彭凯,等.基于PnP算法的前方车辆测距方法[J].国外电子测量技术, 2020, 39(12): 104-108. | 
| LI Z Q, GAO J D, PENG K, et al. Method of measurement vehicle distance based on PnP [J]. Foreign Electronic Measurement Technology, 2020, 39(12): 104-108. | |
| 21 | 黄双发,周乐来,李贻斌.基于视觉的移动机器人相对位姿优化估计[J].无人系统技术, 2023, 6(4): 104-112. | 
| HUANG S F, ZHOU L L, LI Y B. Vision-based relative pose estimation for mobile robots [J]. Unmanned Systems Technology, 2023, 6(4): 104-112. | |
| 22 | TULLY S, KANTOR G, CHOSET H. Leap-frog path design for multi-robot cooperative localization [M]// HOWARD A, IAGNEMMA K, KELLY A. Field and service robotics: results of the 7th international conference, STAR 62. Berlin: Springer, 2010: 307-317. | 
| 23 | ZHANG Z. Flexible camera calibration by viewing a plane from unknown orientations [C]// Proceedings of the 7th IEEE International Conference on Computer Vision. Piscataway: IEEE, 1999: 666-673. | 
| [1] | 潘高峰, 樊渊, 汝玉, 郭予超. 基于点线特征融合的低纹理单目视觉同时定位与地图构建算法[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2170-2176. | 
| [2] | 袁蒙恩, 陈立家, 冯子凯. 基于单目视觉的多种群粒子群机械臂路径规划算法[J]. 计算机应用, 2020, 40(10): 2863-2871. | 
| [3] | 林政, 吕霞付. 基于改进模糊算法的水面无人艇自主避障[J]. 计算机应用, 2019, 39(9): 2523-2528. | 
| [4] | 张午阳, 章伟, 宋芳, 龙林. 基于深度学习的四旋翼无人机单目视觉避障方法[J]. 计算机应用, 2019, 39(4): 1001-1005. | 
| [5] | 罗余洋, 徐为民, 张梦杰, 刘玉强. 采用单目视觉的桥吊负载空间定位方法[J]. 计算机应用, 2016, 36(4): 1156-1162. | 
| [6] | 任秀丽 安乐. 无线传感器网络局部协同定位算法[J]. 计算机应用, 2014, 34(9): 2460-2463. | 
| [7] | 何少佳 刘子扬 史剑清. 基于单目视觉的室内机器人障碍检测方案[J]. 计算机应用, 2012, 32(09): 2556-2559. | 
| [8] | 刘志强 温华. 基于单目视觉的车辆碰撞预警系统[J]. 计算机应用, 2007, 27(8): 2056-2058. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||