《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (4): 1077-1085.DOI: 10.11772/j.issn.1001-9081.2024040428
收稿日期:
2024-04-10
修回日期:
2024-06-27
接受日期:
2024-07-04
发布日期:
2025-04-08
出版日期:
2025-04-10
通讯作者:
倪郑威
作者简介:
项钰斐(1999—),男,浙江金华人,硕士研究生,主要研究方向:自然语言处理、机器学习基金资助:
Received:
2024-04-10
Revised:
2024-06-27
Accepted:
2024-07-04
Online:
2025-04-08
Published:
2025-04-10
Contact:
Zhengwei NI
About author:
XIANG Yufei, born in 1999, M. S. candidate. His research interests include natural language processing, machine learning.Supported by:
摘要:
针对现有边缘服务器提供商(ESP)边缘资源有限导致的分层联邦学习的边缘节点服务质量(QoS)降低的问题,考虑边缘服务器潜在的边缘联合可能性,提出一种动态边缘联合框架(EFF)。所提框架内,不同的ESP相互协作,为分层联邦学习中由于客户端的异构性或数据的非独立同分布(Non-IID)等问题而降低的模型训练效率提供额外的边缘资源。首先,通过量化通信模型设定卸载决策,并将卸载任务发布给框架内其他ESP的边缘服务器,从而解决边缘资源的弹性化需求;其次,通过多轮迭代EFF参与策略(MIEPS)算法求解ESP之间的演化博弈均衡解,从而为ESP找到合适的资源分配策略;最后,通过理论和仿真实验验证均衡点的存在性、唯一性和稳定性。实验结果表明,相较于非联合策略和成对联合策略,通过MIEPS算法构建的三联EFF在基于独立同分布(IID)数据集训练得到的全局模型的预测准确率上分别提高了1.5和1.0个百分点,而在基于Non-IID数据集的准确率上分别提升了2.1和0.7个百分点。此外,通过改变ESP的资源配置方式,验证了EFF能够公平地分配ESP的报酬,激励更多的ESP参与其中,并形成良性的合作环境。
中图分类号:
项钰斐, 倪郑威. 基于演化博弈的分层联邦学习边缘联合动态分析[J]. 计算机应用, 2025, 45(4): 1077-1085.
Yufei XIANG, Zhengwei NI. Edge federation dynamic analysis for hierarchical federated learning based on evolutionary game[J]. Journal of Computer Applications, 2025, 45(4): 1077-1085.
参数 | ESP1 | ESP2 | 参数 | ESP1 | ESP2 |
---|---|---|---|---|---|
[7 000,10 000] | [6 000,9 000] | 20 | 20 | ||
100 | 150 | 2.7×105 | 2.1×105 | ||
800 | 600 | 1 | 1 | ||
800 | 360 |
表1 模拟参数设置
Tab. 1 Simulation parameter setting
参数 | ESP1 | ESP2 | 参数 | ESP1 | ESP2 |
---|---|---|---|---|---|
[7 000,10 000] | [6 000,9 000] | 20 | 20 | ||
100 | 150 | 2.7×105 | 2.1×105 | ||
800 | 600 | 1 | 1 | ||
800 | 360 |
1 | ABDULRAHMAN S, TOUT H, OULD-SLIMANE H, et al. A survey on federated learning: the journey from centralized to distributed on-site learning and beyond[J]. IEEE Internet of Things Journal, 2021, 8(7): 5476-5497. |
2 | 周传鑫,孙奕,汪德刚,等. 联邦学习研究综述[J]. 网络与信息安全学报, 2021, 7(5): 77-92. |
ZHOU C X, SUN Y, WANG D G, et al. Survey of federated learning research[J]. Chinese Journal of Network and Information Security, 2021, 7(5): 77-92. | |
3 | McMAHAN H, MOORE E, RAMAGE D, et al. Communication efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017: 1273-1282. |
4 | YANG Q, LIU Y, CHEN T, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): No.12. |
5 | NISHIO T, YONETANI R. Client selection for federated learning with heterogeneous resources in mobile edge[C]// Proceedings of the 2019 IEEE International Conference on Communications. Piscataway: IEEE, 2019: 1-7. |
6 | LIU L, ZHANG J, SONG S H, et al. Client-edge-cloud hierarchical federated learning[C]// Proceedings of the 2020 IEEE International Conference on Communications. Piscataway: IEEE, 2020: 1-6. |
7 | KHAN L U, ALSENWI M, HAN Z, et al. Self organizing federated learning over wireless networks: a socially aware clustering approach[C]// Proceedings of the 2020 International Conference on Information Networking. Piscataway: IEEE, 2020: 453-458. |
8 | TANDON R, LEI Q, DIMAKIS A G, et al. Gradient coding: avoiding stragglers in distributed learning[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 3368-3376. |
9 | AGRAWAL N, TAPASWI S. Defense mechanisms against DDoS attacks in a cloud computing environment: state-of-the-art and research challenges[J]. IEEE Communications Surveys and Tutorials, 2019, 21(4): 3769-3795. |
10 | HE Q, WANG C, CUI G, et al. A game-theoretical approach for mitigating edge DDoS attack[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(4): 2333-2348. |
11 | DENG Y, LYU F, REN J, et al. SHARE: shaping data distribution at edge for communication-efficient hierarchical federated learning[C]// Proceedings of the IEEE 41st International Conference on Distributed Computing Systems. Piscataway: IEEE, 2021: 24-34. |
12 | 马鑫迪,李清华,姜奇,等. 面向Non-IID数据的拜占庭鲁棒联邦学习[J]. 通信学报, 2023, 44(6): 138-153. |
MA X D, LI Q H, JIANG Q, et al. Byzantine-robust federated learning over Non-IID data[J]. Journal on Communications, 2023, 44(6): 138-153. | |
13 | LUO S, CHEN X, WU Q, et al. HFEL: joint edge association and resource allocation for cost-efficient hierarchical federated edge learning[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6535-6548. |
14 | LIM W Y B, NG J S, XIONG Z, et al. Decentralized edge intelligence: a dynamic resource allocation framework for hierarchical federated learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(3): 536-550. |
15 | YANG J, ZHOU Y, WEN W, et al. Asynchronous hierarchical federated learning based on bandwidth allocation and client scheduling[J]. Applied Sciences, 2023, 13(20): No.11134. |
16 | WU B, FANG F, WANG X, et al. Client orchestration and cost-efficient joint optimization for NOMA-enabled hierarchical federated learning[EB/OL]. [2024-04-14].. |
17 | COADY Y, HOHLFELD O, KEMPF J, et al. Distributed cloud computing: applications, status quo, and challenges[J]. ACM SIGCOMM Computer Communication Review, 2015, 45(2): 38-43. |
18 | WEIBULL J W. Evolutionary game theory[M]. Cambridge: MIT Press, 1997: 30-35. |
19 | ZHAO Y, LI M, LAI L, et al. Federated learning with non-IID data[EB/OL]. [2024-04-14]. . |
20 | JEONG E, OH S, KIM H, et al. Communication-efficient on-device machine learning: federated distillation and augmentation under non-IID private data[EB/OL]. [2024-04-14].. |
21 | MA M, WU L, LIU W, et al. Data-aware hierarchical federated learning via task offloading[C]// Proceedings of the 2022 IEEE Global Communications Conference. Piscataway: IEEE, 2022: 1-6. |
22 | LIU S, YU G, CHEN X, et al. Joint user association and resource allocation for wireless hierarchical federated learning with IID and non-IID data[J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 7852-7866. |
23 | LIM W Y B, NG J S, XIONG Z, et al. Dynamic edge association and resource allocation in self-organizing hierarchical federated learning networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(12): 3640-3653. |
24 | WANG H, SHI P, ZHANG Y. JointCloud: a cross-cloud cooperation architecture for integrated internet service customization[C]// Proceedings of the IEEE 37th International Conference on Distributed Computing Systems. Piscataway: IEEE, 2017: 1846-1855. |
25 | MEYLER K, BUCHANAN S, SCHOLMAN M, et al. Microsoft hybrid cloud unleashed with azure stack and azure[M]. Carmel, IN: Sams Publishing, 2017: 171-182. |
26 | SHAN N, LI Y, CUI X. A multilevel optimization framework for computation offloading in mobile edge computing[J]. Mathematical Problems in Engineering, 2020, 2020: No.4124791. |
27 | DZIYAUDDIN R A, NIYATO D, LUONG N C, et al. Computation offloading and content caching delivery in vehicular edge computing: a survey[J]. Computer Networks, 2021, 197: No. 108228. |
28 | SHEN H, YE Q, ZHUANG W, et al. Drone-small-cell-assisted resource slicing for 5G uplink radio access networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(7): 7071-7086. |
29 | 殷珉,沈航,王天荆,等. 基于分层联邦学习的无人机小基站RAN切片方法[J]. 电子学报, 2023, 51(7): 1774-1780. |
YIN M, SHEN H, WANG T J, et al. Hierarchical federated learning-based RAN slicing for drone-small-cells [J]. Acta Electronica Sinica, 2023, 51(7): 1774-1780. | |
30 | BANY SALAMEH H, AL-OBIEDOLLAH H, MAHASEES R, et al. Opportunistic non-contiguous OFDMA scheduling framework for future B5G/6G cellular networks[J]. Simulation Modelling Practice and Theory, 2022, 119: No.102563. |
31 | XU J, WANG H. Client selection and bandwidth allocation in wireless federated learning networks: a long-term perspective[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 1188-1200. |
32 | YANG Z, CHEN M, SAAD W, et al. Energy efficient federated learning over wireless communication networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1935-1949. |
33 | XI Y, BURR A, WEI J, et al. A general upper bound to evaluate packet error rate over quasi-static fading channels[J]. IEEE Transactions on Wireless Communications, 2011, 10(5): 1373-1377. |
34 | ZAMALLOA M Z, KRISHNAMACHARI B. An analysis of unreliability and asymmetry in low-power wireless links[J]. ACM Transactions on Sensor Networks, 2007, 3(2): No.7. |
35 | CHANDY J A. An analysis of resource costs in a public computing grid[C]// Proceedings of the 2009 IEEE International Symposium on Parallel and Distributed Processing. Piscataway: IEEE, 2009: 1-8. |
36 | HEINONEN J. Lectures on Lipschitz analysis[EB/OL]. [2024-03-21]. . |
37 | SHEVITZ D, PADEN B. Lyapunov stability theory of nonsmooth systems[J]. IEEE Transactions on Automatic Control, 1994, 39(9): 1910-1914. |
38 | LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
[1] | 王华华, 黄梁, 陈甲杰, 方杰宁. 基于深度强化学习的低轨卫星多波束子载波动态分配算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 571-577. |
[2] | 张俊娜, 王欣新, 李天泽, 赵晓焱, 袁培燕. 基于动态服务缓存辅助的任务卸载方法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1493-1500. |
[3] | 赵晓焱, 韩威, 张俊娜, 袁培燕. 基于异步深度强化学习的车联网协作卸载策略[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1501-1510. |
[4] | 唐睿, 庞川林, 张睿智, 刘川, 岳士博. D2D通信增强的蜂窝网络中基于DDPG的资源分配[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1562-1569. |
[5] | 唐睿, 岳士博, 张睿智, 刘川, 庞川林. UAV协助下非正交多址接入使能的数据采集系统中能效优化机制[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1209-1218. |
[6] | 罗华亮, 李全忠, 张旗. 融合信息通信和空中计算的认知无线网络鲁棒资源分配优化[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1195-1202. |
[7] | 陈发堂, 黄淼, 金宇峰. 面向用户需求的低轨卫星资源分配算法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1242-1247. |
[8] | 秦鑫彤, 宋政育, 侯天为, 王飞越, 孙昕, 黎伟. 基于自适应p持续的移动自组网信道接入和资源分配算法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 863-868. |
[9] | 马勇健, 史旭华, 王佩瑶. 基于两阶段搜索与动态资源分配的约束多目标进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 269-277. |
[10] | 李磊, 张国富, 苏兆品, 岳峰. 体系结构动态变化的软件测试资源分配算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2261-2270. |
[11] | 李校林, 江雨桑. 无人机辅助移动边缘计算中的任务卸载算法[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1893-1899. |
[12] | 耿方兴, 李卓, 陈昕. 基于多领导者Stackelberg博弈的分层联邦学习激励机制设计[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3551-3558. |
[13] | 郑万波, 陈慧敏, 吴燕清, 夏云霓. 基于应急救援的信息共享策略仿真[J]. 《计算机应用》唯一官方网站, 2023, 43(1): 306-311. |
[14] | 毕文婷, 林海涛, 张立群. 基于多阶段演化信号博弈模型的移动目标防御决策算法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2780-2787. |
[15] | 王界钦, 林士飏, 彭世明, 贾硕, 杨苗会. 协同移动边缘计算分层资源配置机制[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2501-2510. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||