《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (4): 1223-1231.DOI: 10.11772/j.issn.1001-9081.2024040461

• 数据科学与技术 • 上一篇    下一篇

基于级联残差图卷积网络的多行为推荐

党伟超, 宋楚君(), 高改梅, 刘春霞   

  1. 太原科技大学 计算机科学与技术学院,太原 030024
  • 收稿日期:2024-04-18 修回日期:2024-06-12 接受日期:2024-06-19 发布日期:2025-04-08 出版日期:2025-04-10
  • 通讯作者: 宋楚君
  • 作者简介:党伟超(1974—),男,山西运城人,副教授,博士,CCF会员,主要研究方向:智能计算、软件可靠性
    高改梅(1978—),女,山西吕梁人,副教授,博士,CCF会员,主要研究方向:网络安全、密码学
    刘春霞(1977—),女,山西大同人,副教授,硕士,CCF会员,主要研究方向:软件工程、数据库。
  • 基金资助:
    山西省自然科学基金资助项目(202203021211194);太原科技大学博士科研启动基金资助项目(20202063);太原科技大学研究生教育创新项目(SY2022063)

Multi-behavior recommendation based on cascading residual graph convolutional network

Weichao DANG, Chujun SONG(), Gaimei GAO, Chunxia LIU   

  1. College of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan Shanxi 030024,China
  • Received:2024-04-18 Revised:2024-06-12 Accepted:2024-06-19 Online:2025-04-08 Published:2025-04-10
  • Contact: Chujun SONG
  • About author:DANG Weichao, born in 1974, Ph. D., associate professor. His research interests include intelligent computing, software reliability.
    GAO Gaimei, born in 1978, Ph. D., associate professor. Her research interests include network security, cryptography.
    LIU Chunxia, born in 1977, M. S., associate professor. Her research interests include software engineering, database.
  • Supported by:
    Shanxi Provincial Natural Science Foundation(202203021211194);Doctoral Research Start-up Fund Project of Taiyuan University of Science and Technology(20202063);Graduate Education Innovation Project of Taiyuan University of Science and Technology(SY2022063)

摘要:

针对多行为推荐研究中存在的数据稀疏和忽视多行为之间复杂联系的问题,提出一种基于级联残差图卷积网络的多行为推荐(CRMBR)模型。首先,从由所有行为的相互作用构建的统一同构图中学习用户和项目的全局嵌入,并将这些嵌入用作初始化嵌入;其次,通过级联残差块捕获不同行为之间的联系,以不断细化不同类型行为的嵌入,从而完善用户偏好;最后,通过2种不同的聚合策略分别聚合用户和项目嵌入,并采用多任务学习(MTL)优化这些嵌入。在多个真实数据集上的实验结果表明,CRMBR模型的推荐性能优于目前的主流模型。与先进的基准模型——多行为分层图卷积网络(MB-HGCN)相比,在Tmall数据集上,所提模型的命中率(HR@20)和归一化折损累积增益(NDCG@20)分别提升了3.1%和3.9%;在Beibei数据集上,则分别提升了15.8%和16.9%;在Jdata数据集上,则分别提升了1.0%和3.3%,验证了所提模型的有效性。

关键词: 多行为推荐, 级联残差, 图卷积网络, 聚合策略, 多任务学习

Abstract:

A Multi-Behavior Recommendation based on Cascading Residual graph convolutional network (CRMBR) model was proposed to address the problems of data sparsity and neglecting the complex connections among multiple behaviors in multi-behavior recommendation research. Firstly, the global embeddings of users and items were learned from a unified isomorphic graph constructed from the interactions of all behaviors and used as initialization embeddings. Secondly, the embeddings of different types of behaviors were refined continuously to improve the user preferences by capturing the connections among different behaviors through cascading residual blocks. Finally, user and item embeddings were aggregated through two different aggregation strategies, respectively, and optimized using Multi-Task Learning (MTL). Experimental results on several real datasets show that the recommendation performance of CRMBR model is better than that of the current mainstream models. Compared with the advanced benchmark model — Multi-Behavior Hierarchical Graph Convolutional Network (MB-HGCN), the proposed model has the Hit Rate (HR@20) and Normalized Discount Cumulative Gain (NDCG@20) improved by 3.1% and 3.9% on Tmall dataset, increased by 15.8% and 16.9% on Beibei dataset, and improved by 1.0% and 3.3% on Jdata dataset, respectively, which validates the effectiveness of the proposed model.

Key words: multi-behavior recommendation, cascading residual, Graph Convolutional Network (GCN), aggregation strategy, Multi-Task Learning (MTL)

中图分类号: