《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (3): 978-987.DOI: 10.11772/j.issn.1001-9081.2024040478
刘宇1,2, 张鹏程1,2(), 张丽媛1,2, 刘祎1,2, 桂志国1,2, 张雪怡1,2, 朱陈一菲1,2, 汤豪威1,2
收稿日期:
2024-04-22
修回日期:
2024-08-28
接受日期:
2024-08-30
发布日期:
2024-09-14
出版日期:
2025-03-10
通讯作者:
张鹏程
作者简介:
刘宇(1999—),男,河北沧州人,硕士研究生,主要研究方向:医学图像重建、医学图像处理基金资助:
Yu LIU1,2, Pengcheng ZHANG1,2(), Liyuan ZHANG1,2, Yi LIU1,2, Zhiguo GUI1,2, Xueyi ZHANG1,2, Chenyifei ZHU1,2, Haowei TANG1,2
Received:
2024-04-22
Revised:
2024-08-28
Accepted:
2024-08-30
Online:
2024-09-14
Published:
2025-03-10
Contact:
Pengcheng ZHANG
About author:
LIU Yu, born in 1999, M. S. candidate. His research interests include medical image reconstruction, medical image processing.Supported by:
摘要:
针对全变分(TV)最小化方法在低剂量计算机断层扫描(LDCT)图像重建中易导致的图像过平滑和块状效应等问题,提出一种基于低秩与TV联合正则化的LDCT图像重建方法,以提升LDCT重建图像的视觉质量。首先,建立一个基于低秩与TV联合正则化的图像重建模型,从而从理论上获得更精确和自然的重建结果;其次,通过引入具有非局部自相似特性的低秩先验克服仅使用TV最小化方法存在的局限性;最后,采用Chambolle-Pock (CP)算法优化求解上述模型,以提高模型的求解效率,并保证模型能有效求解。在3种不同LDCT扫描条件下验证所提方法的有效性。在Mayo数据集上的实验结果表明,与PWLS-LDMM(Penalized Weighted Least-Squares based on Low-Dimensional Manifold)方法、NOWNUNM(NOnlocal Weighted NUclear Norm Minimization)方法和CP方法相比,在25%剂量下,所提方法的视觉信息保真度(VIF)分别提升了28.39%、8.30%和2.93%;在15%剂量下,所提方法的VIF分别提升了29.96%、13.83%和4.53%;在10%剂量下,所提方法的VIF分别提升了30.22%、17.10%和7.66%。可见,所提方法在消除噪声和条纹伪影的同时能保留更多的细节纹理信息,验证了所提方法具有较好的噪声伪影抑制能力。
中图分类号:
刘宇, 张鹏程, 张丽媛, 刘祎, 桂志国, 张雪怡, 朱陈一菲, 汤豪威. 基于低秩与全变分联合正则化的低剂量CT图像重建[J]. 计算机应用, 2025, 45(3): 978-987.
Yu LIU, Pengcheng ZHANG, Liyuan ZHANG, Yi LIU, Zhiguo GUI, Xueyi ZHANG, Chenyifei ZHU, Haowei TANG. Low-dose CT image reconstruction based on low-rank and total variation joint regularization[J]. Journal of Computer Applications, 2025, 45(3): 978-987.
方法 | PSNR/dB | SSIM | RMSE | VIF |
---|---|---|---|---|
FBP | 26.829 1 | 0.521 1 | 0.045 6 | 0.422 6 |
PWLS-LDMM | 31.155 3 | 0.787 5 | 0.027 7 | 0.565 7 |
NOWNUNM | 32.395 5 | 0.803 3 | 0.024 0 | 0.579 5 |
CP | 32.939 2 | 0.798 6 | 0.022 5 | 0.550 4 |
本文方法 | 33.816 9 | 0.810 0 | 0.020 4 | 0.591 9 |
表1 Mayo数据集上25%剂量下不同示例的LDCT图像重建定量结果
Tab. 1 Quantitative results of LDCT image reconstruction for different examples at 25% dose on Mayo dataset
方法 | PSNR/dB | SSIM | RMSE | VIF |
---|---|---|---|---|
FBP | 26.829 1 | 0.521 1 | 0.045 6 | 0.422 6 |
PWLS-LDMM | 31.155 3 | 0.787 5 | 0.027 7 | 0.565 7 |
NOWNUNM | 32.395 5 | 0.803 3 | 0.024 0 | 0.579 5 |
CP | 32.939 2 | 0.798 6 | 0.022 5 | 0.550 4 |
本文方法 | 33.816 9 | 0.810 0 | 0.020 4 | 0.591 9 |
方法 | PSNR/dB | SSIM | RMSE | VIF |
---|---|---|---|---|
FBP | 26.482 7 | 0.521 0 | 0.047 4 | 0.437 1 |
PWLS-LDMM | 35.885 3 | 0.861 0 | 0.016 1 | 0.642 1 |
NOWNUNM | 35.681 4 | 0.870 4 | 0.016 4 | 0.639 3 |
CP | 35.820 7 | 0.868 8 | 0.016 2 | 0.608 6 |
本文方法 | 36.574 2 | 0.886 5 | 0.014 8 | 0.682 4 |
表2 Mayo数据集上15%剂量下不同示例的LDCT图像重建定量结果
Tab. 2 Quantitative results of LDCT image reconstruction for different examples at 15% dose on Mayo dataset
方法 | PSNR/dB | SSIM | RMSE | VIF |
---|---|---|---|---|
FBP | 26.482 7 | 0.521 0 | 0.047 4 | 0.437 1 |
PWLS-LDMM | 35.885 3 | 0.861 0 | 0.016 1 | 0.642 1 |
NOWNUNM | 35.681 4 | 0.870 4 | 0.016 4 | 0.639 3 |
CP | 35.820 7 | 0.868 8 | 0.016 2 | 0.608 6 |
本文方法 | 36.574 2 | 0.886 5 | 0.014 8 | 0.682 4 |
方法 | PSNR/dB | SSIM | RMSE | VIF |
---|---|---|---|---|
FBP | 16.032 9 | 0.344 4 | 0.157 9 | 0.413 1 |
PWLS-LDMM | 32.387 2 | 0.779 9 | 0.024 0 | 0.559 1 |
NOWNUNM | 32.988 0 | 0.800 3 | 0.022 4 | 0.572 0 |
CP | 32.794 8 | 0.783 3 | 0.022 9 | 0.511 1 |
本文方法 | 33.594 6 | 0.811 7 | 0.020 9 | 0.577 9 |
表3 在Mayo数据集上10%剂量下不同示例的LDCT图像重建定量结果
Tab. 3 Quantitative results of LDCT image reconstruction for different examples at 10% dose on Mayo dataset
方法 | PSNR/dB | SSIM | RMSE | VIF |
---|---|---|---|---|
FBP | 16.032 9 | 0.344 4 | 0.157 9 | 0.413 1 |
PWLS-LDMM | 32.387 2 | 0.779 9 | 0.024 0 | 0.559 1 |
NOWNUNM | 32.988 0 | 0.800 3 | 0.022 4 | 0.572 0 |
CP | 32.794 8 | 0.783 3 | 0.022 9 | 0.511 1 |
本文方法 | 33.594 6 | 0.811 7 | 0.020 9 | 0.577 9 |
方法 | 25%剂量 | 15%剂量 | 10%剂量 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | RMSE | VIF | PSNR/dB | SSIM | RMSE | VIF | PSNR/dB | SSIM | RMSE | VIF | |
FBP | 25.206 4 | 0.523 6 | 0.054 9 | 0.368 5 | 22.703 0 | 0.445 0 | 0.073 3 | 0.331 0 | 20.585 4 | 0.383 4 | 0.093 5 | 0.298 4 |
PWLS-LDMM | 33.904 7 | 0.809 7 | 0.020 1 | 0.552 9 | 32.968 5 | 0.776 7 | 0.022 4 | 0.492 7 | 31.197 7 | 0.736 6 | 0.027 5 | 0.449 0 |
NOWNUNM | 35.127 5 | 0.855 5 | 0.017 5 | 0.655 5 | 34.237 5 | 0.827 0 | 0.019 4 | 0.562 5 | 33.410 7 | 0.799 2 | 0.021 3 | 0.499 3 |
CP | 33.718 0 | 0.856 8 | 0.020 6 | 0.689 7 | 33.580 0 | 0.841 6 | 0.020 9 | 0.612 5 | 33.023 4 | 0.822 0 | 0.022 3 | 0.543 1 |
本文方法 | 35.509 5 | 0.864 5 | 0.016 7 | 0.709 9 | 34.289 7 | 0.850 7 | 0.019 2 | 0.640 3 | 33.716 2 | 0.837 5 | 0.020 6 | 0.584 7 |
表4 Mayo数据集上不同剂量下同一示例的LDCT图像重建定量结果
Tab. 4 Quantitative results of LDCT image reconstruction for same example at different doses on Mayo dataset
方法 | 25%剂量 | 15%剂量 | 10%剂量 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | RMSE | VIF | PSNR/dB | SSIM | RMSE | VIF | PSNR/dB | SSIM | RMSE | VIF | |
FBP | 25.206 4 | 0.523 6 | 0.054 9 | 0.368 5 | 22.703 0 | 0.445 0 | 0.073 3 | 0.331 0 | 20.585 4 | 0.383 4 | 0.093 5 | 0.298 4 |
PWLS-LDMM | 33.904 7 | 0.809 7 | 0.020 1 | 0.552 9 | 32.968 5 | 0.776 7 | 0.022 4 | 0.492 7 | 31.197 7 | 0.736 6 | 0.027 5 | 0.449 0 |
NOWNUNM | 35.127 5 | 0.855 5 | 0.017 5 | 0.655 5 | 34.237 5 | 0.827 0 | 0.019 4 | 0.562 5 | 33.410 7 | 0.799 2 | 0.021 3 | 0.499 3 |
CP | 33.718 0 | 0.856 8 | 0.020 6 | 0.689 7 | 33.580 0 | 0.841 6 | 0.020 9 | 0.612 5 | 33.023 4 | 0.822 0 | 0.022 3 | 0.543 1 |
本文方法 | 35.509 5 | 0.864 5 | 0.016 7 | 0.709 9 | 34.289 7 | 0.850 7 | 0.019 2 | 0.640 3 | 33.716 2 | 0.837 5 | 0.020 6 | 0.584 7 |
方法 | PSNR/dB | SSIM | RMSE | VIF |
---|---|---|---|---|
FBP | 16.237 2 | 0.316 5 | 0.154 2 | 0.432 0 |
PWLS-LDMM | 31.101 1 | 0.772 9 | 0.027 9 | 0.612 3 |
NOWNUNM | 31.349 4 | 0.779 4 | 0.027 1 | 0.675 8 |
CP | 31.312 9 | 0.955 1 | 0.027 2 | 0.700 5 |
本文方法 | 33.989 8 | 0.957 5 | 0.020 0 | 0.738 5 |
表5 在Piglet数据集上25%剂量的LDCT图像重建定量结果
Tab. 5 Quantitative results of LDCT image reconstruction at 25% dose on Piglet dataset
方法 | PSNR/dB | SSIM | RMSE | VIF |
---|---|---|---|---|
FBP | 16.237 2 | 0.316 5 | 0.154 2 | 0.432 0 |
PWLS-LDMM | 31.101 1 | 0.772 9 | 0.027 9 | 0.612 3 |
NOWNUNM | 31.349 4 | 0.779 4 | 0.027 1 | 0.675 8 |
CP | 31.312 9 | 0.955 1 | 0.027 2 | 0.700 5 |
本文方法 | 33.989 8 | 0.957 5 | 0.020 0 | 0.738 5 |
方法 | PSNR/dB | SSIM | RMSE | VIF |
---|---|---|---|---|
FBP | 16.241 8 | 0.344 4 | 0.154 1 | 0.350 3 |
PWLS-LDMM | 31.347 4 | 0.783 1 | 0.027 1 | 0.492 9 |
NOWNUNM | 31.023 7 | 0.785 4 | 0.028 1 | 0.675 0 |
CP | 31.037 3 | 0.783 3 | 0.028 1 | 0.708 6 |
本文方法 | 31.442 1 | 0.811 7 | 0.026 8 | 0.753 0 |
表6 Piglet数据集上15%剂量LDCT图像重建定量结果
Tab. 6 Quantitative results of LDCT image reconstruction at 15% dose on Piglet dataset
方法 | PSNR/dB | SSIM | RMSE | VIF |
---|---|---|---|---|
FBP | 16.241 8 | 0.344 4 | 0.154 1 | 0.350 3 |
PWLS-LDMM | 31.347 4 | 0.783 1 | 0.027 1 | 0.492 9 |
NOWNUNM | 31.023 7 | 0.785 4 | 0.028 1 | 0.675 0 |
CP | 31.037 3 | 0.783 3 | 0.028 1 | 0.708 6 |
本文方法 | 31.442 1 | 0.811 7 | 0.026 8 | 0.753 0 |
方法 | PSNR/dB | SSIM | RMSE | VIF |
---|---|---|---|---|
FBP | 14.178 3 | 0.265 6 | 0.195 5 | 0.384 8 |
PWLS-LDMM | 30.411 5 | 0.758 0 | 0.030 2 | 0.617 4 |
NOWNUNM | 30.317 2 | 0.892 4 | 0.030 5 | 0.647 7 |
CP | 31.894 9 | 0.959 4 | 0.025 4 | 0.684 2 |
本文方法 | 32.520 8 | 0.960 5 | 0.023 7 | 0.696 7 |
表7 在Piglet数据集下10%剂量LDCT图像重建定量结果
Tab. 7 Quantitative results of LDCT image reconstruction at 10% dose on Piglet dataset
方法 | PSNR/dB | SSIM | RMSE | VIF |
---|---|---|---|---|
FBP | 14.178 3 | 0.265 6 | 0.195 5 | 0.384 8 |
PWLS-LDMM | 30.411 5 | 0.758 0 | 0.030 2 | 0.617 4 |
NOWNUNM | 30.317 2 | 0.892 4 | 0.030 5 | 0.647 7 |
CP | 31.894 9 | 0.959 4 | 0.025 4 | 0.684 2 |
本文方法 | 32.520 8 | 0.960 5 | 0.023 7 | 0.696 7 |
1 | BRENNER D J, HALL E J. Computed tomography — an increasing source of radiation exposure[J]. The New England Journal of Medicine, 2007, 357(22): 2277-2284. |
2 | OTHMAN A E, BONGERS M N, ZINSSER D, et al. Evaluation of reduced-dose CT for acute non-traumatic abdominal pain: evaluation of diagnostic accuracy in comparison to standard-dose CT[J]. Acta Radiologica, 2018, 59(1): 4-12. |
3 | HSIEH J. Adaptive streak artifact reduction in computed tomography resulting from excessive X-ray photon noise[J]. Medical Physics, 1998, 25(11): 2139-2147. |
4 | TAMURA A, MUKAIDA E, OTA Y, et al. Superior objective and subjective image quality of deep learning reconstruction for low-dose abdominal CT imaging in comparison with model-based iterative reconstruction and filtered back projection[J]. British Journal of Radiology, 2021, 94(1123): No.20201357. |
5 | 侯瑞峰, 张鹏程,张丽媛,等. 基于全变分正则项展开的迭代去噪网络[J]. 计算机应用, 2024, 44(3): 916-921. |
HOU R F, ZHANG P C, ZHANG L Y, et al. Iterative denoising network based on total variation regular term expansion[J]. Journal of Computer Applications, 2024, 44(3): 916-921. | |
6 | ZHANG Y, ZHANG J, LU H. Statistical sinogram smoothing for low-dose CT with segmentation-based adaptive filtering[J]. IEEE Transactions on Nuclear Science, 2010, 57(5): 2587-2598. |
7 | GORDON R, BENDER R, HERMAN G T. Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471-481. |
8 | ANDERSEN A H, KAK A C. Simultaneous Algebraic Reconstruction Technique (SART): a superior implementation of the ART algorithm[J]. Ultrasonic Imaging, 1984, 6(1): 81-94. |
9 | DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 1-22. |
10 | PICKHARDT P J, LUBNER M G, KIM D H, et al. Abdominal CT with Model-Based Iterative Reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging[J]. American Journal of Roentgenology, 2012, 199(6): 1266-1274. |
11 | LU S, YANG B, XIAO Y, et al. Iterative reconstruction of low-dose CT based on differential sparse[J]. Biomedical Signal Processing and Control, 2023, 79(Pt B): No.104204. |
12 | GEYER L L, SCHOEPF U J, MEINEL F G, et al. State of the art: iterative CT reconstruction techniques[J]. Radiology, 2015, 276(2): 339-357. |
13 | WANG F, WANG R, QIU H. Low-dose CT reconstruction using dataset-free learning [J]. PLoS ONE, 2024, 19(6): No.e0304738. |
14 | LIU Y, MA J, FAN Y, et al. Adaptive-weighted total variation minimization for sparse data toward low-dose X-ray computed tomography image reconstruction[J]. Physics in Medicine and Biology, 2012, 57(23): No.7923. |
15 | HUANG Y, TAUBMANN O, HUANG X, et al. A new weighted anisotropic total variation algorithm for limited angle tomography[C]// Proceedings of the IEEE 13th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2016: 585-588. |
16 | XI Y, ZHOU P, YU H, et al. Adaptive-weighted high order TV algorithm for sparse-view CT reconstruction[J]. Medical Physics, 2023, 50(9): 5568-5584. |
17 | SIDKY E Y, PAN X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine and Biology, 2008, 53(17): No.4777. |
18 | ZHANG Y, YANG K, ZHU Y, et al. NOWNUNM: nonlocal weighted nuclear norm minimization for sparse-sampling CT reconstruction[J]. IEEE Access, 2018, 6: 73370-73379. |
19 | ZHANG Y, ZENG D, BIAN Z, et al. Weighted tensor low-rankness and learnable analysis sparse representation model for texture preserving low-dose CT reconstruction[J]. IEEE Transactions on Computational Imaging, 2021, 7: 321-336. |
20 | KIM K, YE J C, WORSTELL W, et al. Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty[J]. IEEE Transactions on Medical Imaging, 2015, 34(3): 748-760. |
21 | YANG K, XIA W, BAO P, et al. Nonlocal weighted nuclear norm minimization based sparse-sampling CT image reconstruction[C]// Proceedings of the IEEE 16th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2019: 1700-1703. |
22 | SHEN Y, SUN S, XU F, et al. CT image reconstruction via nonlocal low-rank regularization and data-driven tight frame[J]. Symmetry, 2021, 13(10): No.1873. |
23 | HE Y, ZENG L, XU Q, et al. Spectral CT reconstruction via low-rank representation and structure preserving regularization[J]. Physics in Medicine and Biology, 2023, 68(2): No.025011. |
24 | WANG S, XIA K, WANG L, et al. Low-rank matrix factorization with nonconvex regularization and bilinear decomposition[J]. Signal Processing, 2022, 201: No.108694. |
25 | FAZEL M, HINDI H, BOYD S P. A rank minimization heuristic with application to minimum order system approximation[C]// Proceedings of the 2001 American Control Conference — Volume 6. Piscataway: IEEE, 2001: 4734-4739. |
26 | CANDÈS E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): No.11. |
27 | YAO J, XU Z, HUANG X, et al. An efficient algorithm for dynamic MRI using low-rank and total variation regularizations[J]. Medical Image Analysis, 2018, 44: 14-27. |
28 | LIN Z, CHEN M, MA Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[EB/OL]. [2024-08-29].. |
29 | 王心,朱浩华,刘光灿. 卷积鲁棒主成分分析[J]. 计算机应用, 2021, 41(5): 1314-1318. |
WANG X, ZHU H H, LIU G C. Convolution robust principal component analysis[J]. Journal of Computer Applications, 2021, 41(5): 1314-1318. | |
30 | POCK T, CHAMBOLLE A. Diagonal preconditioning for first order primal-dual algorithms in convex optimization[C]// Proceedings of the 2011 International Conference on Computer Vision. Piscataway: IEEE, 2011: 1762-1769. |
31 | CHAMBOLLE A, POCK T. A first-order primal-dual algorithm for convex problems with applications to imaging[J]. Journal of Mathematical Imaging and Vision, 2011, 40: 120-145. |
32 | SIDKY E Y, JØRGENSEN J H, PAN X. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm[J]. Physics in Medicine and Biology, 2012, 57(10): No.3065. |
33 | 席雅睿,乔志伟,温静,等. 基于Chambolle-Pock算法框架的高阶TV图像重建算法[J]. 计算机应用, 2020, 40(6): 1793-1798. |
XI Y R, QIAO Z W, WEN J, et al. High order TV image reconstruction algorithm based on Chambolle-Pock algorithm framework[J]. Journal of Computer Applications, 2020, 40(6): 1793-1798. | |
34 | BAO P, ZHOU J, ZHANG Y. Few-view CT reconstruction with group sparsity regularization[J]. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34(9): No.e3101. |
35 | ROCKAFELLAR R T. Convex analysis[M]. Princeton, NJ: Princeton University Press, 1997. |
36 | COMBETTES P L, PESQUET J C. Proximal thresholding algorithm for minimization over orthonormal bases[J]. SIAM Journal on Optimization, 2008, 18(4): 1351-1376. |
37 | CAI J F, CANDÈS E J, SHEN Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982. |
38 | 牛善洲,梁礼境,李硕,等. 基于低维流形先验的低剂量CT重建方法[J]. 计算机工程与应用, 2023, 59(18): 242-248. |
NIU S Z, LIANG L J, LI S, et al. Low-dose CT reconstruction using low-dimensional manifold prior[J]. Computer Engineering and Applications, 2023, 59(18): 242-248. | |
39 | SHEIKH H R, BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444. |
40 | MOEN T R, CHEN B, HOLMES D R, Ⅲ, et al. Low-dose CT image and projection dataset[J]. Medical Physics, 2021, 48(2): 902-911. |
41 | XIA W, LU Z, HUANG Y, et al. MAGIC: manifold and graph integrative convolutional network for low-dose CT reconstruction[J]. IEEE Transactions on Medical Imaging, 2021, 40(12): 3459-3472. |
[1] | 邱华禄, 蔺素珍, 王彦博, 刘峰, 李大威. 基于复卷积双域级联网络的欠采样磁共振图像重建算法[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 580-587. |
[2] | 刘雨生, 肖学中. 基于扩散模型微调的高保真图像编辑[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3574-3580. |
[3] | 樊小宇, 蔺素珍, 王彦博, 刘峰, 李大威. 基于残差图卷积神经网络的高倍欠采样核磁共振图像重建算法[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1261-1268. |
[4] | 汪鹏, 张大蔚, 陆正军, 李林昊. 基于可靠性低秩因子分解和泛化差异性差分的运动目标检测[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 514-520. |
[5] | 任奇泽, 贾洪杰, 陈东宇. 融合局部结构学习的大规模子空间聚类算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3747-3754. |
[6] | 胡紫琪, 谢凯, 文畅, 李美然, 贺建飚. 生成对抗网络下的低剂量CT图像增强[J]. 《计算机应用》唯一官方网站, 2023, 43(1): 280-288. |
[7] | 李昆鹏, 张鹏程, 上官宏, 王燕玲, 杨婕, 桂志国. 基于卷积神经网络的时频域CT重建算法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1308-1316. |
[8] | 林乐平, 周宏敏, 欧阳宁. 融合空间位置与结构信息的压缩感知图像重建方法[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 930-937. |
[9] | 范莉莉, 卢桂馥, 唐肝翌, 杨丹. 基于Hessian正则化和非负约束的低秩表示子空间聚类算法[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 115-122. |
[10] | 严海升, 马新强. 基于径向基函数的多目标回归特征构建算法[J]. 计算机应用, 2021, 41(8): 2219-2224. |
[11] | 王心, 朱浩华, 刘光灿. 卷积鲁棒主成分分析[J]. 计算机应用, 2021, 41(5): 1314-1318. |
[12] | 李杏峰, 黄玉清, 任珍文, 李毅红. 基于自适应邻域的鲁棒多视图聚类算法[J]. 计算机应用, 2021, 41(4): 1093-1099. |
[13] | 蒋丽, 黄仕建, 严文娟. 基于低秩行为信息和多尺度卷积神经网络的人体行为识别方法[J]. 计算机应用, 2021, 41(3): 721-726. |
[14] | 李华, 卢桂馥, 余沁茹. 基于干净数据的流形正则化非负矩阵分解[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3492-3498. |
[15] | 葛晨宇, 董良, 许伊昆, 常毅, 张宏鸣. 基于总变分低秩组稀疏的全球雷达数据修复算法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3353-3361. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||