《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (3): 930-937.DOI: 10.11772/j.issn.1001-9081.2021030434

• 多媒体计算与计算机仿真 • 上一篇    

融合空间位置与结构信息的压缩感知图像重建方法

林乐平1,2, 周宏敏2, 欧阳宁1,2()   

  1. 1.认知无线电与信息处理省部共建教育部重点实验室(桂林电子科技大学), 广西 桂林 541004
    2.桂林电子科技大学 信息与通信学院, 广西 桂林 541004
  • 收稿日期:2021-03-22 修回日期:2021-06-12 接受日期:2021-06-17 发布日期:2022-04-09 出版日期:2022-03-10
  • 通讯作者: 欧阳宁
  • 作者简介:林乐平(1980—),女,广西桂平人,副教授,博士,主要研究方向:机器学习、智能信息处理、图像信号处理
    周宏敏(1996—),女,湖南邵阳人,硕士研究生,主要研究方向:模式识别、深度学习;
  • 基金资助:
    国家自然科学基金资助项目(62001133);广西科技基地和人才专项(AD19110060);广西高等学校千名中青年骨干教师培育计划项目;广西无线宽带通信与信号处理重点实验室基金资助项目(GXKL06200114)

Compressed sensing image reconstruction method fusing spatial location and structure information

Leping LIN1,2, Hongmin ZHOU2, Ning OUYANG1,2()   

  1. 1.Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology),Guilin Guangxi 541004,China
    2.School of Information and Communication,Guilin University of Electronic Technology,Guilin Guangxi 541004,China
  • Received:2021-03-22 Revised:2021-06-12 Accepted:2021-06-17 Online:2022-04-09 Published:2022-03-10
  • Contact: Ning OUYANG
  • About author:LIN Leping, born in 1980, Ph. D., associate professor. Her research interests include machine learning, intelligent information processing, image signal processing.
    ZHOU Hongmin, born in 1996, M. S. candidate. Her research interests include pattern recognition, deep learning.
  • Supported by:
    National Natural Science Foundation of China(62001133);Special Foundation for Scientific Bases and Talents of Guangxi(AD19110060);Guangxi One Thousand Young and Middle-aged College and University Backbone Teachers Cultivation Program, Fund of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing(GXKL06200114)

摘要:

针对低采样率下分块压缩感知重建图像视觉效果不佳的问题,提出一种融合空间位置与结构信息的压缩感知图像重建方法(SLSI)。首先,对观测值进行线性映射得到图像块的初步估计值;然后,基于块分组重建支路和全图重建支路对图像的空间位置信息和结构信息进行提取、增强和融合;最后,通过加权策略融合双支路的输出得到最终重建全图。在块分组重建支路中,根据图像块的数据特点分配重建资源。在全图重建支路中,主要通过双边滤波和结构特征交互模块对相邻图像块像素进行信息交互。实验结果表明,与基于非迭代重建网络(ReconNet)、基于非局部约束的多尺度重建网络(NL-MRN)等压缩感知重建方法相比,由于结合了像素间强自相关性这种图像先验,在采样率为0.05的情况下,所提方法在压缩感知领域常用的测试图像数据上的峰值信噪比(PSNR)和结构相似度(SSIM)分别平均提升了2.617 5 dB和0.105 3,重建图像的视觉效果较好。

关键词: 卷积神经网络, 压缩感知, 图像重建, 特征融合, 图像先验

Abstract:

Aiming at the problem of poor visual effects of block-based compressed sensing reconstructed images at low sampling rates, a compressed sensing image reconstruction method that fused Spatial Location and Structure Information (SLSI) was proposed. Firstly, observations were linearly mapped to obtain initial estimated values of image blocks. Then, based on block grouping reconstruction branch and whole image reconstruction branch, the spatial location information and structure information of the image were extracted, enhanced and fused. Finally, weighted strategy was used to fuse the outputs of the two branches to obtain final reconstructed whole image. In the block grouping reconstruction branch, reconstruction resources were allocated according to the data characteristics of the image blocks. In the whole image reconstruction branch, information exchange between adjacent image block pixels was mainly carried out through bilateral filtering and structural feature interaction module. Experimental results show that compared with compressed sensing reconstruction methods based on non-iterative Reconstruction Network (ReconNet) and Multi-scale Reconstruction neural Network with Non-Local constraint (NL-MRN), due to the combination of the image prior with strong autocorrelation between pixels, when sampling rate is 0.05, the average Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity index (SSIM) of the proposed method on the test image data commonly used in the compressed sensing field increase 2.617 5 dB and 0.105 3 respectively, and the visual effects of reconstructed images are better.

Key words: Convolutional Neural Network (CNN), compressed sensing, image reconstruction, feature fusion, image prior

中图分类号: