| 1 | CANDES E J, WAKIN M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.  10.1109/msp.2007.914731 | 
																													
																						| 2 | 陈伟业, 孙权森. 结合压缩感知与非局部信息的图像超分辨率重建[J]. 计算机应用, 2016, 36(9): 2570-2575.  10.11772/j.issn.1001-9081.2016.09.2570 | 
																													
																						|  | CHEN W Y, SUN Q S. Image super-resolution reconstruction combined with compressed sensing and nonlocal information [J]. Journal of Computer Applications, 2016, 36(9): 2570-2575.  10.11772/j.issn.1001-9081.2016.09.2570 | 
																													
																						| 3 | LIN L P, FANG L, JIAO L C. Geometric structure guided collaborative compressed sensing [J]. Signal Processing: Image Communication, 2016, 40:16-25.  10.1016/j.image.2015.10.006 | 
																													
																						| 4 | SUN Z Y, WANG H H, LIU B L, et al. CS-FCDA: a compressed sensing-based on fault-tolerant data aggregation in sensor networks [J]. Sensors, 2018, 18(11): 3749.  10.3390/s18113749 | 
																													
																						| 5 | YANG J, LU X, SU W, et al. Multistatic inverse synthetic aperture radar imaging based on parametric block-sparse reconstruction [J]. Journal of Applied Remote Sensing, 2020, 14(2):1.  10.1117/1.jrs.14.026501 | 
																													
																						| 6 | GAO X W, ZHANG J, CHE W, et al. Block-based compressive sensing coding of natural images by local structural measurement matrix [C]// Proceedings of 2015 the Data Compression Conference. Piscataway: IEEE, 2015:133-142.  10.1109/dcc.2015.47 | 
																													
																						| 7 | KULKARNI K, LOHIT S, TURAGA P, et al. ReconNet: non-iterative reconstruction of images from compressively sensed measurements [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2016: 449-458.  10.1109/cvpr.2016.55 | 
																													
																						| 8 | YAO H, DAI F, ZHANG D, et al. DR2-Net: deep residual reconstruction network for image compressive sensing [J]. Neurocomputing, 2019, 359: 483-493.  10.1016/j.neucom.2019.05.006 | 
																													
																						| 9 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2016: 770-778.  10.1109/cvpr.2016.90 | 
																													
																						| 10 | LI W, LIU F, JIAO L, et al. Multi-Scale residual reconstruction neural network with non-local constraint [J]. IEEE Access, 2019, 7: 70910-70918.  10.1109/access.2019.2918593 | 
																													
																						| 11 | KAI X, ZHANG Z, REN F B. LAPRAN: a scalable laplacian pyramid reconstructive adversarial network for flexible compressive sensing reconstruction [C]// Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018: 485-500.  10.1007/978-3-030-01249-6_30 | 
																													
																						| 12 | 练秋生,富利鹏,陈书贞,等.基于多尺度残差网络的压缩感知重建方法[J].自动化学报,2019,45(11):2082-2091. | 
																													
																						|  | LIAN Q S, FU L P, CHEN S Z, et al. A compressed sensing algorithm based on multi-scale residual reconstruction network [J]. Acta Automatica Sinica, 2019, 45(11): 2082-2091. | 
																													
																						| 13 | HUANG H, NIE G, ZHENG Y, et al. Image restoration from patch-based compressed sensing measurement [J]. Neurocomputing, 2019, 340: 145-157.  10.1016/j.neucom.2019.02.036 | 
																													
																						| 14 | 杜秀丽,张薇,陈波.基于波浪式矩阵置换的稀疏度均衡分块压缩感知算法[J].计算机应用,2018,38(12):3541-3546.  10.11772/j.issn.1001-9081.2018051039 | 
																													
																						|  | DU X L, ZHANG W, CHEN B. Ripple matrix permutation-based sparsity balanced block compressed sensing algorithm [J]. Journal of Computer Applications, 2018,38(12):3541-3546.  10.11772/j.issn.1001-9081.2018051039 | 
																													
																						| 15 | JIE H, LI S, GANG S, et al. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.  10.1109/cvpr.2018.00745 | 
																													
																						| 16 | KRIZHEVSKY A, SUTSKEVER I, HINTONG E. ImageNet classification with deep convolutional neural networks [C]// Advances in Neural Information Processing Systems, 2012, 25: 1097-1105. | 
																													
																						| 17 | 欧阳宁,梁婷,林乐平.基于自注意力网络的图像超分辨率重建[J].计算机应用,2019,39(8):2391-2395.  10.11772/j.issn.1001-9081.2019010158 | 
																													
																						|  | OUYANG N, LIANG T, LIN L P. Self-attention network based image super-resolution [J]. Journal of Computer Applications, 2019,39(8):2391-2395.  10.11772/j.issn.1001-9081.2019010158 | 
																													
																						| 18 | CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018: 801-818.  10.1007/978-3-030-01234-2_49 | 
																													
																						| 19 | 王得成,陈向宁,易辉,等.基于自适应联合双边滤波的深度图像空洞填充与优化算法[J].中国激光,2019,46(10):1009002.  10.3788/CJL201946.1009002 | 
																													
																						|  | WANG D C, CHEN X N, YI H, et al. Hole filling and optimization algorithm for depth images based on adaptive joint bilateral filtering [J]. Chinese Journal of Lasers, 2019, 46(10): 1009002.  10.3788/CJL201946.1009002 | 
																													
																						| 20 | MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics [C]// Proceedings of the 8th IEEE International Conference on Computer Vision. Piscataway: IEEE, 2002: 416-423.  10.1109/iccv.2001.937655 | 
																													
																						| 21 | KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. [2021-03-20]. . | 
																													
																						| 22 | HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1026-1034.  10.1109/iccv.2015.123 | 
																													
																						| 23 | LI C, YIN W, JIANG H, et al. An efficient augmented Lagrangian method with applications to total variation minimization [J]. Computational Optimization and Applications, 2013, 56(3): 507-530.  10.1007/s10589-013-9576-1 | 
																													
																						| 24 | METZLER C A, MALEKI A, BARANIUK R G. From denoising to compressed sensing [J]. IEEE Transactions on Information Theory, 2016, 62(9): 5117-5144.  10.1109/tit.2016.2556683 |