1 |
CANDES E J, WAKIN M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. 10.1109/msp.2007.914731
|
2 |
陈伟业, 孙权森. 结合压缩感知与非局部信息的图像超分辨率重建[J]. 计算机应用, 2016, 36(9): 2570-2575. 10.11772/j.issn.1001-9081.2016.09.2570
|
|
CHEN W Y, SUN Q S. Image super-resolution reconstruction combined with compressed sensing and nonlocal information [J]. Journal of Computer Applications, 2016, 36(9): 2570-2575. 10.11772/j.issn.1001-9081.2016.09.2570
|
3 |
LIN L P, FANG L, JIAO L C. Geometric structure guided collaborative compressed sensing [J]. Signal Processing: Image Communication, 2016, 40:16-25. 10.1016/j.image.2015.10.006
|
4 |
SUN Z Y, WANG H H, LIU B L, et al. CS-FCDA: a compressed sensing-based on fault-tolerant data aggregation in sensor networks [J]. Sensors, 2018, 18(11): 3749. 10.3390/s18113749
|
5 |
YANG J, LU X, SU W, et al. Multistatic inverse synthetic aperture radar imaging based on parametric block-sparse reconstruction [J]. Journal of Applied Remote Sensing, 2020, 14(2):1. 10.1117/1.jrs.14.026501
|
6 |
GAO X W, ZHANG J, CHE W, et al. Block-based compressive sensing coding of natural images by local structural measurement matrix [C]// Proceedings of 2015 the Data Compression Conference. Piscataway: IEEE, 2015:133-142. 10.1109/dcc.2015.47
|
7 |
KULKARNI K, LOHIT S, TURAGA P, et al. ReconNet: non-iterative reconstruction of images from compressively sensed measurements [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2016: 449-458. 10.1109/cvpr.2016.55
|
8 |
YAO H, DAI F, ZHANG D, et al. DR2-Net: deep residual reconstruction network for image compressive sensing [J]. Neurocomputing, 2019, 359: 483-493. 10.1016/j.neucom.2019.05.006
|
9 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2016: 770-778. 10.1109/cvpr.2016.90
|
10 |
LI W, LIU F, JIAO L, et al. Multi-Scale residual reconstruction neural network with non-local constraint [J]. IEEE Access, 2019, 7: 70910-70918. 10.1109/access.2019.2918593
|
11 |
KAI X, ZHANG Z, REN F B. LAPRAN: a scalable laplacian pyramid reconstructive adversarial network for flexible compressive sensing reconstruction [C]// Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018: 485-500. 10.1007/978-3-030-01249-6_30
|
12 |
练秋生,富利鹏,陈书贞,等.基于多尺度残差网络的压缩感知重建方法[J].自动化学报,2019,45(11):2082-2091.
|
|
LIAN Q S, FU L P, CHEN S Z, et al. A compressed sensing algorithm based on multi-scale residual reconstruction network [J]. Acta Automatica Sinica, 2019, 45(11): 2082-2091.
|
13 |
HUANG H, NIE G, ZHENG Y, et al. Image restoration from patch-based compressed sensing measurement [J]. Neurocomputing, 2019, 340: 145-157. 10.1016/j.neucom.2019.02.036
|
14 |
杜秀丽,张薇,陈波.基于波浪式矩阵置换的稀疏度均衡分块压缩感知算法[J].计算机应用,2018,38(12):3541-3546. 10.11772/j.issn.1001-9081.2018051039
|
|
DU X L, ZHANG W, CHEN B. Ripple matrix permutation-based sparsity balanced block compressed sensing algorithm [J]. Journal of Computer Applications, 2018,38(12):3541-3546. 10.11772/j.issn.1001-9081.2018051039
|
15 |
JIE H, LI S, GANG S, et al. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745
|
16 |
KRIZHEVSKY A, SUTSKEVER I, HINTONG E. ImageNet classification with deep convolutional neural networks [C]// Advances in Neural Information Processing Systems, 2012, 25: 1097-1105.
|
17 |
欧阳宁,梁婷,林乐平.基于自注意力网络的图像超分辨率重建[J].计算机应用,2019,39(8):2391-2395. 10.11772/j.issn.1001-9081.2019010158
|
|
OUYANG N, LIANG T, LIN L P. Self-attention network based image super-resolution [J]. Journal of Computer Applications, 2019,39(8):2391-2395. 10.11772/j.issn.1001-9081.2019010158
|
18 |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018: 801-818. 10.1007/978-3-030-01234-2_49
|
19 |
王得成,陈向宁,易辉,等.基于自适应联合双边滤波的深度图像空洞填充与优化算法[J].中国激光,2019,46(10):1009002. 10.3788/CJL201946.1009002
|
|
WANG D C, CHEN X N, YI H, et al. Hole filling and optimization algorithm for depth images based on adaptive joint bilateral filtering [J]. Chinese Journal of Lasers, 2019, 46(10): 1009002. 10.3788/CJL201946.1009002
|
20 |
MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics [C]// Proceedings of the 8th IEEE International Conference on Computer Vision. Piscataway: IEEE, 2002: 416-423. 10.1109/iccv.2001.937655
|
21 |
KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. [2021-03-20]. .
|
22 |
HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1026-1034. 10.1109/iccv.2015.123
|
23 |
LI C, YIN W, JIANG H, et al. An efficient augmented Lagrangian method with applications to total variation minimization [J]. Computational Optimization and Applications, 2013, 56(3): 507-530. 10.1007/s10589-013-9576-1
|
24 |
METZLER C A, MALEKI A, BARANIUK R G. From denoising to compressed sensing [J]. IEEE Transactions on Information Theory, 2016, 62(9): 5117-5144. 10.1109/tit.2016.2556683
|