| 1 | 孙彦景,余政达,陈瑞瑞,等. 车联网中基于深度强化学习的高可靠资源分配算法[J]. 重庆邮电大学学报(自然科学版), 2023, 35(4):706-714. | 
																													
																						|  | SUN Y J, YU Z D, CHEN R R, et al. Deep reinforcement learning based high reliability resource allocation algorithm for internet of vehicles[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2023, 35(4):706-714. | 
																													
																						| 2 | 李智勇,王琦,陈一凡,等. 车辆边缘计算环境下任务卸载研究综述[J]. 计算机学报, 2021, 44(5):963-982. | 
																													
																						|  | LI Z Y, WANG Q, CHEN Y F, et al. A survey on task offloading research in vehicular edge computing[J]. Chinese Journal of Computers, 2019, 44(5):963-982. | 
																													
																						| 3 | ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-domain Non-Orthogonal Multiple Access (NOMA) in 5G systems: potentials and challenges[J]. IEEE Communications Surveys and Tutorials, 2017, 19(2): 721-742. | 
																													
																						| 4 | CHENG J, GUAN D. Research on task-offloading decision mechanism in mobile edge computing-based internet of vehicle[J]. EURASIP Journal on Wireless Communications and Networking, 2021, 2021: No.101. | 
																													
																						| 5 | HU X, GUO L, YAO Z, et al. Balance-oriented task unloading optimizing algorithm for parked vehicle edge computing[C]// Proceedings of the 2021 International Conference on Intelligent Transportation Engineering, LNEE 901. Singapore: Springer, 2022: 512-525. | 
																													
																						| 6 | WANG S, WANG W, JIA Z, et al. Flexible task scheduling based on edge computing and cloud collaboration[J]. Computer Systems Science and Engineering, 2022, 42(3): 1241-1255. | 
																													
																						| 7 | CHEN C, ZHANG Y, WANG Z, et al. Distributed computation offloading method based on deep reinforcement learning in ICV[J]. Applied Soft Computing, 2021, 103: No.107108. | 
																													
																						| 8 | ZHANG K, CAO J, ZHANG Y. Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge computing and networks[J]. IEEE Transactions on Industrial Informatics, 2022, 18(2): 1405-1413. | 
																													
																						| 9 | HUANG X, HE L, CHEN X, et al. Revenue and energy efficiency-driven delay-constrained computing task offloading and resource allocation in a vehicular edge computing network: a deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2022, 9(11): 8852-8868. | 
																													
																						| 10 | LIU K, FENG L, DAI P, et al. Coding-assisted broadcast scheduling via memetic computing in SDN-based vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8): 2420-2431. | 
																													
																						| 11 | LIU C, LIU K, GUO S, et al. Adaptive offloading for time-critical tasks in heterogeneous internet of vehicles[J]. IEEE Internet of Things Journal, 2020, 7(9): 7999-8011. | 
																													
																						| 12 | DAI P, SONG F, LIU K, et al. Edge intelligence for adaptive multimedia streaming in heterogeneous internet of vehicles[J]. IEEE Transactions on Mobile Computing, 2023, 22(3): 1464-1478. | 
																													
																						| 13 | LIU Y, ZHANG H, LONG K, et al. Energy efficient subchannel matching and power allocation in NOMA autonomous driving vehicular networks[J]. IEEE Wireless Communications, 2019, 26(4): 88-93. | 
																													
																						| 14 | PATEL D K, SHAH H, DING Z, et al. Performance analysis of NOMA in vehicular communications over i.n.i.d Nakagami-m fading channels[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6254-6268. | 
																													
																						| 15 | ZHANG F, WANG M M, BAO X, et al. Centralized resource allocation and distributed power control for NOMA-integrated NR V2X[J]. IEEE Internet of Things Journal, 2021, 8(22): 16522-16534. | 
																													
																						| 16 | LI C, ZHANG Y, GAO X, et al. Energy-latency tradeoffs for edge caching and dynamic service migration based on DQN in mobile edge computing[J]. Journal of Parallel and Distributed Computing, 2022, 166: 15-31. | 
																													
																						| 17 | FUJIMOTO S, VAN HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 1587-1596. | 
																													
																						| 18 | ZHAO X, HUANG G, JIANG J, et al. Task offloading of cooperative intrusion detection system based on Deep Q Network in mobile edge computing[J]. Expert Systems with Applications, 2022, 206: No.117860. | 
																													
																						| 19 | CHEN Y, HAN W, ZHU Q, et al. Target-driven obstacle avoidance algorithm based on DDPG for connected autonomous vehicles[J]. EURASIP Journal on Advances in Signal Processing, 2022, 2022: No.61. | 
																													
																						| 20 | XU X, LIU K, DAI P, et al. Joint task offloading and resource optimization in NOMA-based vehicular edge computing: a game-theoretic DRL approach[J]. Journal of Systems Architecture, 2023, 134: No.102780. | 
																													
																						| 21 | PAPANDRIOPOULOS J, EVANS J S. Low-complexity distributed algorithms for spectrum balancing in multi-user DSL networks [C]// Proceedings of the 2006 IEEE International Conference on Communications. Piscataway: IEEE, 2006: 3270-3275. | 
																													
																						| 22 | LIU C, LIU K, REN H, et al. RtDS: real-time distributed strategy for multi-period task offloading in vehicular edge computing environment [J]. Neural Computing and Applications, 2023, 35(17): 12373-12387. | 
																													
																						| 23 | ZHU H, WU Q, WU X J, et al. Decentralized power allocation for MIMO-NOMA vehicular edge computing based on deep reinforcement learning[J]. IEEE Internet of Things Journal, 2022, 9(14): 12770-12782. | 
																													
																						| 24 | XU L, YANG Z, WU H, et al. Socially driven joint optimization of communication, caching, and computing resources in vehicular networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 461-476. | 
																													
																						| 25 | HU X, HUANG Y. Deep reinforcement learning based offloading decision algorithm for vehicular edge computing[J]. PeerJ Computer Science, 2022, 8: No.e1126. | 
																													
																						| 26 | QIU X, ZHANG W, CHEN W, et al. Distributed and collective deep reinforcement learning for computation offloading: a practical perspective[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(5): 1085-1101. | 
																													
																						| 27 | CHENG Z, MIN M, LIWANG M, et al. Multiagent DDPG-based joint task partitioning and power control in fog computing networks[J]. IEEE Internet of Things Journal, 2022, 9(1): 104-116. | 
																													
																						| 28 | ZHAO L, ZHANG E, WAN S, et al. MESON: a mobility-aware dependent task offloading scheme for urban vehicular edge computing[J]. IEEE Transactions on Mobile Computing, 2024, 23(5): 4259-4272. |