| [1] | LEE D H. Pseudo-Label: the simple and efficient semi-supervised learning method for deep neural networks [EB/OL]. [2024-06-12]. . | 
																													
																						| [2] | ZHANG P, ZHANG B, ZHANG T, et al. Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12409-12419. | 
																													
																						| [3] | HOYER L, DAI D, WANG H, et al. MIC: masked image consistency for context-enhanced domain adaptation [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 11721-11732. | 
																													
																						| [4] | MANCINI M, PORZI L, BULO S R, et al. Boosting domain adaptation by discovering latent domains [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3771-3780. | 
																													
																						| [5] | CARLUCCI F M, PORZI L, CAPUTO B, et al. AutoDIAL: automatic domain alignment layers [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5067-5075. | 
																													
																						| [6] | GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks [J]. Journal of Machine Learning Research, 2016, 17: 1-35. | 
																													
																						| [7] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2014: 2672-2680. | 
																													
																						| [8] | WANG H, SHEN T, ZHANG W, et al. Classes matter: a fine-grained adversarial approach to cross-domain semantic segmentation [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12359. Cham: Springer, 2020: 642-659. | 
																													
																						| [9] | GONG R, LI W, CHEN Y, et al. DLOW: domain flow for adaptation and generalization [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2472-2481. | 
																													
																						| [10] | TSAI Y H, HUNG W C, SCHULTER S, et al. Learning to adapt structured output space for semantic segmentation [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7472-7481. | 
																													
																						| [11] | CHEN Y, LI W, VAN GOOL L. ROAD: reality oriented adaptation for semantic segmentation of urban scenes [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7892-7901. | 
																													
																						| [12] | LUO Y, ZHENG L, GUAN T, et al. Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2502-2511. | 
																													
																						| [13] | DU L, TAN J, YANG H, et al. SSF-DAN: separated semantic feature based domain adaptation network for semantic segmentation [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 982-991. | 
																													
																						| [14] | WANG Z, YU M, WEI Y, et al. Differential treatment for stuff and things: a simple unsupervised domain adaptation method for semantic segmentation [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12632-12641. | 
																													
																						| [15] | HOFFMAN J, WANG D, YU F, et al. FCNs in the wild: pixel-level adversarial and constraint-based adaptation [EB/OL]. [2024-06-12]. . | 
																													
																						| [16] | SANKARANARAYANAN S, BALAJI Y, JAIN A, et al. Learning from synthetic data: addressing domain shift for semantic segmentation [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3752-3761. | 
																													
																						| [17] | ZOU Y, YU Z, VIJAYA KUMAR B V K, et al. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11207. Cham: Springer, 2018: 297-313. | 
																													
																						| [18] | VU T H, JAIN H, BUCHER M, et al. ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2512-2521. | 
																													
																						| [19] | YANG Y, SOATTO S. FDA: Fourier domain adaptation for semantic segmentation [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4084-4094. | 
																													
																						| [20] | SAKARIDIS C, DAI D, HECKER S, et al. Model adaptation with synthetic and real data for semantic dense foggy scene understanding [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11217. Cham: Springer, 2018: 707-724. | 
																													
																						| [21] | ZOU Y, YU Z, LIU X, et al. Confidence regularized self-training [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 5981-5990. | 
																													
																						| [22] | ARASLANOV N, ROTH S. Self-supervised augmentation consistency for adapting semantic segmentation [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 15379-15389. | 
																													
																						| [23] | MELAS-KYRIAZI L, MANRAI A K. PixMatch: unsupervised domain adaptation via pixelwise consistency training [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12430-12440. | 
																													
																						| [24] | SOHN K, BERTHELOT D, LI C L, et al. FixMatch: simplifying semi-supervised learning with consistency and confidence [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc, 2020: 596-608. | 
																													
																						| [25] | LI Y, YUAN L, VASCONCELOS N. Bidirectional learning for domain adaptation of semantic segmentation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 6929-6938. | 
																													
																						| [26] | PIZZATI F, DE CHARETTE R, ZACCARIA M, et al. Domain bridge for unpaired image-to-image translation and unsupervised domain adaptation [C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2979-2987. | 
																													
																						| [27] | HUO X, XIE L, HU H, et al. Domain-agnostic prior for transfer semantic segmentation [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 7065-7075. | 
																													
																						| [28] | HOYER L, DAI D, VAN GOOL L. DAFormer: improving network architectures and training strategies for domain-adaptive semantic segmentation [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9914-9925. |