1 |
SWAN B, LAVERDIERE M, YANG H L, et al. Iterative Self-Organizing SCEne-LEvel Sampling (ISOSCELES) for large-scale building extraction [J]. GIScience and Remote Sensing, 2022, 59(1): 1-16.
|
2 |
WANG L, FANG S, MENG X, et al. Building extraction with Vision Transformer [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.5625711.
|
3 |
WEI S, ZHANG T, JI S, et al. BuildMapper: a fully learnable framework for vectorized building contour extraction [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 197: 87-104.
|
4 |
WEI S, ZHANG T, YU D, et al. From lines to Polygons: polygonal building contour extraction from High-Resolution remote sensing imagery [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 209: 213-232.
|
5 |
LI X, YAO X, FANG Y. Building-A-Nets: robust building extraction from high-resolution remote sensing images with adversarial networks [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3680-3687.
|
6 |
ZORZI S, FRAUNDORFER F. Regularization of building boundaries in satellite images using adversarial and regularized losses [C]// Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2019: 5140-5143.
|
7 |
DING L, TANG H, LIU Y, et al. Adversarial shape learning for building extraction in VHR remote sensing images [J]. IEEE Transactions on Image Processing, 2022, 31: 678-690.
|
8 |
QIN X, ZHANG Z, HUANG C, et al. BASNet: boundary-aware salient object detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7471-7481.
|
9 |
CHEN S, SHI W, ZHOU M, et al. CGSANet: a contour-guided and local structure-aware encoder-decoder network for accurate building extraction from very high-resolution remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1526-1542.
|
10 |
GUO H, SHI Q, DU B, et al. Scene-driven multitask parallel attention network for building extraction in high-resolution remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4287-4306.
|
11 |
BISCHKE B, HELBER P, FOLZ J, et al. Multi-task learning for segmentation of building footprints with deep neural networks [C]// Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019: 1480-1484.
|
12 |
ZHU Q, LIAO C, HU H, et al. MAP-Net: multiple attending path neural network for building footprint extraction from remote sensed imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 6169-6181.
|
13 |
李星华,白学辰,李正军,等. 面向高分影像建筑物提取的多层次特征融合网络[J]. 武汉大学学报(信息科学版), 2022, 47(8):1236-1244.
|
|
LI X H, BAI X C, LI Z J, et al. High-resolution image building extraction based on multi-level feature fusion network [J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1236-1244.
|
14 |
杨潇宇,汪西莉. 结合多尺度注意力和边缘监督的遥感图像建筑物分割模型[J]. 激光与光电子学进展, 2021, 59(22): No.2228004.
|
|
YANG X Y, WANG X L. Building segmentation model of remote sensing image combining multiscale attention and edge supervision [J]. Laser and Optoelectronics Progress, 2021, 59(22): No.2228004.
|
15 |
金澍,关沫,边玉婵,等. 基于改进U-Net的遥感影像建筑物提取方法[J]. 激光与光电子学进展, 2023, 60(4): No.0401002.
|
|
JIN S, GUAN M, BIAN Y C, et al. Building extraction from remote sensing images based on improved U-Net [J]. Laser and Optoelectronics Progress, 2023, 60(4): No.0401002.
|
16 |
DENG W, SHI Q, LI J. Attention-gate-based encoder-decoder network for automatical building extraction [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2611-2620.
|
17 |
张卓尔,潘俊,舒奇迪. 基于双路细节关注网络的遥感影像建筑物提取[J]. 武汉大学学报(信息科学版), 2024, 49(3): 376-388.
|
|
ZHANG Z E, PAN J, SHU Q D. Building extraction based on dual-stream detail-concerned network [J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 376-388.
|
18 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
|
19 |
TIAN Z, HE T, SHEN C, et al. Decoders matter for semantic segmentation: data-dependent decoding enables flexible feature aggregation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3121-3130.
|
20 |
WEI S, JI S, LU M. Toward automatic building footprint delineation from aerial images using CNN and regularization [J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 2178-2189.
|
21 |
JI S, WEI S, LU M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 574-586.
|
22 |
MNIH V. Machine learning for aerial image labeling [D]. Toronto: University of Toronto, 2013.
|
23 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241.
|
24 |
SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5686-5696.
|
25 |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239.
|