[1] |
洪钦智,王志君,郭一凡,等. 一种支持多数据块混合处理的FFT优化方法[J]. 西安电子科技大学学报, 2022, 49(6): 42-50.
|
|
HONG Q Z, WANG Z J, GUO Y F, et al. Multi-data mixed FFT processing optimization method[J]. Journal of Xidian University, 2022, 49(6): 42-50.
|
[2] |
高媛,赵禹,王厚军,等. 数字示波器中FPGA间高速信号传输同步方法[J]. 电子科技大学学报, 2024, 53(2): 219-226.
|
|
GAO Y, ZHAO Y, WANG H J, et al. High-speed signal transmission synchronization method between FPGAs in digital oscilloscopes[J]. Journal of University of Electronic Science and Technology of China, 2024, 53(2): 219-226.
|
[3] |
INGEMARSSON C, KÄLLSTRÖM P, QURESHI F, et al. Efficient FPGA mapping of pipeline SDF FFT cores[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(9): 2486-2497.
|
[4] |
KANDERS H, MELLQVIST T, GARRIDO M, et al. A 1 million-point FFT on a single FPGA[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(10): 3863-3873.
|
[5] |
GHOUWAYEL A AL, LOUET Y. FPGA implementation of a re-configurable FFT for multi-standard systems in software radio context[J]. IEEE Transactions on Consumer Electronics, 2009, 55(2): 950-958.
|
[6] |
SANKARAN A, REDDY M S, ARUNKUMAR K R, et al. Design and implementation of 1024 point pipelined radix 4 FFT processor on FPGA for biomedical signal processing applications[C]// Proceedings of the 2020 IEEE International Symposium on Smart Electronic Systems. Piscataway: IEEE, 2020: 1-6.
|
[7] |
王海淼. 基于FPGA的实时FFT分析方法研究[D]. 哈尔滨:哈尔滨工业大学, 2021: 17-33.
|
|
WANG H M. Research on FPGA-based real-time FFT analysis[D]. Harbin: Harbin Institute of Technology, 2021: 17-33.
|
[8] |
杨苗苗,郭锋,张永亮. 多路并行流水线型基22FFT算法实现[J]. 陆军工程大学学报, 2023, 2(2): 54-59.
|
|
YANG M M, GUO F, ZHANG Y L. Implementation of multi-path parallel-pipelined radix 22FFT algorithm[J]. Journal of Army Engineering University of PLA, 2023, 2(2): 54-59.
|
[9] |
才华,陈广秋,刘广文,等. 基于FPGA架构的可变点FFT处理器设计与实现[J]. 吉林大学学报(理学版), 2018, 56(1): 151-158.
|
|
CAI H, CHEN G Q, LIU G W, et al. Design and implementation of variable points FFT processor based on FPGA architecture[J]. Journal of Jilin University (Science Edition), 2018, 56(1): 151-158.
|
[10] |
SEKHAR B R, PRABHU K M M. Radix-2 decimation-in-frequency algorithm for the computation of the real-valued FFT[J]. IEEE Transactions on Signal Processing, 1999, 47(4): 1181-1184.
|
[11] |
YU C, YEN M H. Area efficient 128- to 2048/1536-point pipeline FFT processor for LTE and mobile WiMAX systems[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23(9): 1793-1800.
|
[12] |
SIU T W, SHAM C W, LAU F C M. Operating frequency improvement on FPGA implementation of a pipeline large-FFT processor[C]// Proceedings of the 19th International Conference on Advanced Communication Technology. Piscataway: IEEE, 2017: 5-9.
|
[13] |
MACTAGGART I R, JACK M A. A single chip radix-2 FFT butterfly architecture using parallel data distributed arithmetic[J]. IEEE Journal of Solid-State Circuits, 1984, 19(3): 368-373.
|
[14] |
LE BA N, KIM T T H. An area efficient 1024-point low power radix-22 FFT processor with feed-forward multiple delay commutators[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(10): 3291-3299.
|
[15] |
GYANENDRA, RAMAN B, KAUSHIK B K. Novel bit-reordering circuit for continuous-flow parallel FFT architectures[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2020, 67(12): 3392-3396.
|
[16] |
RAFFERTY C, O’NEILL M, HANLEY N. Evaluation of large integer multiplication methods on hardware[J]. IEEE Transactions on Computers, 2017, 66(8): 1369-1382.
|
[17] |
LI B, YAN Y F, WEI Y X, et al. Scalable and parallel optimization of the number theoretic transform based on FPGA[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2024, 32(2): 291-304.
|