《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (10): 3311-3319.DOI: 10.11772/j.issn.1001-9081.2024091383
• 多媒体计算与计算机仿真 • 上一篇
收稿日期:
2024-09-27
修回日期:
2025-01-08
接受日期:
2025-01-10
发布日期:
2025-03-18
出版日期:
2025-10-10
通讯作者:
江松林
作者简介:
梁震远(2000—),男,江苏南京人,硕士研究生,主要研究方向:图像处理、深度学习基金资助:
Zhenyuan LIANG1, Songlin JIANG2(), Songhao ZHU1
Received:
2024-09-27
Revised:
2025-01-08
Accepted:
2025-01-10
Online:
2025-03-18
Published:
2025-10-10
Contact:
Songlin JIANG
About author:
LIANG Zhenyuan, born in 2000, M. S. candidate. His research interests include image processing, deep learning.Supported by:
摘要:
现有的基于盲点网络的自监督图像去噪方法常因为网络结构的限制,导致图像信息的严重损失。为解决这一问题,首先,提出一种自监督图像去噪方法,通过将传统的盲点网络改进为盲环网络(BRN),进一步降低噪声的空间相关性;其次,针对传统掩码策略导致图像信息丢失的问题,提出一种随机恢复掩码(RRM)策略,在减少信息损失的同时,增强去噪结果的细节信息;最后,提出一种双约束损失函数,在防止模型过度拟合的同时,有效保留图像的重要信息。实验结果表明,相较于次优的基于BRN的自监督图像去噪方法,所提方法在SIDD验证数据集上的峰值信噪比(PSNR)提高了0.17 dB,结构相似性(SSIM)提高了0.007,图像块感知相似度(IPPS)降低了0.006,验证了所提方法具有优越的去噪性能。
中图分类号:
梁震远, 江松林, 朱松豪. 基于盲环网络和随机恢复掩码的自监督图像去噪[J]. 计算机应用, 2025, 45(10): 3311-3319.
Zhenyuan LIANG, Songlin JIANG, Songhao ZHU. Self-supervised image denoising based on blind-ring network and random recovery mask[J]. Journal of Computer Applications, 2025, 45(10): 3311-3319.
类型 | 方法 | SIDD Validation | SIDD Benchmark | DND Benchmark | ||||
---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | IPPS | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
无需预训练 | BM3D | 25.71 | 0.576 | 0.657 | 25.65 | 0.685 | 34.51 | 0.851 |
WNNM | 26.05 | 0.592 | 0.635 | 25.78 | 0.809 | 34.67 | 0.865 | |
有监督 | CBDNet | 33.07 | 0.863 | 0.288 | 33.28 | 0.868 | 38.05 | 0.942 |
PD | 33.96 | 0.899 | 0.258 | 34.23 | 0.898 | 38.40 | 0.945 | |
DnCNN | 37.73 | 0.943 | 0.245 | 37.61 | 0.941 | 38.73 | 0.945 | |
U-net | 38.98 | 0.954 | 0.201 | 38.92 | 0.953 | 39.37 | 0.954 | |
VDN | 39.29 | 0.956 | 0.208 | 39.26 | 0.955 | 39.38 | 0.952 | |
Restormer | 39.93 | 0.960 | 0.198 | 40.02 | 0.960 | 39.58 | 0.955 | |
无监督 | BGAN | — | — | — | — | — | 35.58 | 0.922 |
CAN | — | — | — | 32.48 | 0.897 | — | — | |
C2N | 35.36 | 0.932 | 0.192 | 35.35 | 0.937 | 37.28 | 0.924 | |
Uformer | — | — | — | — | — | 37.93 | 0.937 | |
自监督 | Noise2Void | 27.48 | 0.664 | 0.592 | 27.68 | 0.668 | — | — |
Noise2Self | 29.94 | 0.782 | 0.556 | 29.56 | 0.808 | — | — | |
NAC | — | — | — | — | — | 36.20 | 0.925 | |
R2R | — | — | — | 34.78 | 0.898 | — | — | |
CVF-SID | 34.15 | 0.911 | 0.423 | 34.71 | 0.917 | 36.50 | 0.924 | |
AP-BSN | 36.74 | 0.934 | 0.281 | 36.91 | 0.931 | 38.09 | 0.937 | |
SS-BSN | — | — | — | 36.73 | 0.923 | 37.72 | 0.928 | |
BRN | 37.39 | 0.934 | 0.176 | 36.91 | 0.931 | 38.09 | 0.937 | |
MFAF | — | — | — | 37.33 | 0.929 | 38.41 | 0.940 | |
MBBSN-MCRR | 37.51 | 0.937 | 0.173 | 37.63 | 0.941 | 38.81 | 0.945 | |
本文方法 | 37.56 | 0.941 | 0.170 | 37.44 | 0.938 | 38.76 | 0.946 |
表1 不同方法的去噪性能对比
Tab. 1 Denoising performance comparison of different methods
类型 | 方法 | SIDD Validation | SIDD Benchmark | DND Benchmark | ||||
---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | IPPS | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
无需预训练 | BM3D | 25.71 | 0.576 | 0.657 | 25.65 | 0.685 | 34.51 | 0.851 |
WNNM | 26.05 | 0.592 | 0.635 | 25.78 | 0.809 | 34.67 | 0.865 | |
有监督 | CBDNet | 33.07 | 0.863 | 0.288 | 33.28 | 0.868 | 38.05 | 0.942 |
PD | 33.96 | 0.899 | 0.258 | 34.23 | 0.898 | 38.40 | 0.945 | |
DnCNN | 37.73 | 0.943 | 0.245 | 37.61 | 0.941 | 38.73 | 0.945 | |
U-net | 38.98 | 0.954 | 0.201 | 38.92 | 0.953 | 39.37 | 0.954 | |
VDN | 39.29 | 0.956 | 0.208 | 39.26 | 0.955 | 39.38 | 0.952 | |
Restormer | 39.93 | 0.960 | 0.198 | 40.02 | 0.960 | 39.58 | 0.955 | |
无监督 | BGAN | — | — | — | — | — | 35.58 | 0.922 |
CAN | — | — | — | 32.48 | 0.897 | — | — | |
C2N | 35.36 | 0.932 | 0.192 | 35.35 | 0.937 | 37.28 | 0.924 | |
Uformer | — | — | — | — | — | 37.93 | 0.937 | |
自监督 | Noise2Void | 27.48 | 0.664 | 0.592 | 27.68 | 0.668 | — | — |
Noise2Self | 29.94 | 0.782 | 0.556 | 29.56 | 0.808 | — | — | |
NAC | — | — | — | — | — | 36.20 | 0.925 | |
R2R | — | — | — | 34.78 | 0.898 | — | — | |
CVF-SID | 34.15 | 0.911 | 0.423 | 34.71 | 0.917 | 36.50 | 0.924 | |
AP-BSN | 36.74 | 0.934 | 0.281 | 36.91 | 0.931 | 38.09 | 0.937 | |
SS-BSN | — | — | — | 36.73 | 0.923 | 37.72 | 0.928 | |
BRN | 37.39 | 0.934 | 0.176 | 36.91 | 0.931 | 38.09 | 0.937 | |
MFAF | — | — | — | 37.33 | 0.929 | 38.41 | 0.940 | |
MBBSN-MCRR | 37.51 | 0.937 | 0.173 | 37.63 | 0.941 | 38.81 | 0.945 | |
本文方法 | 37.56 | 0.941 | 0.170 | 37.44 | 0.938 | 38.76 | 0.946 |
方法 | Params/MB | 运算量/GFLOPs |
---|---|---|
NAC | 0.6 | 36 |
AP-BSN | 3.7 | 29 |
BRN | 15.0 | 46 |
MFAF | 95.0 | 29 |
本文方法 | 11.0 | 33 |
表2 不同自监督方法的复杂性对比
Tab. 2 Complexness comparison of different self-supervised methods
方法 | Params/MB | 运算量/GFLOPs |
---|---|---|
NAC | 0.6 | 36 |
AP-BSN | 3.7 | 29 |
BRN | 15.0 | 46 |
MFAF | 95.0 | 29 |
本文方法 | 11.0 | 33 |
盲环尺寸 | PSNR/dB | |
---|---|---|
SIDD Validation | SIDD Benchmark | |
1×1 | 24.24 | 26.35 |
3×3 | 27.23 | 28.21 |
5×5 | 30.91 | 31.53 |
7×7 | 33.67 | 34.24 |
9×9 | 37.56 | 38.76 |
11×11 | 34.21 | 36.43 |
13×13 | 32.68 | 34.21 |
表3 不同盲环尺寸的消融实验结果
Tab. 3 Ablation experimental results of different blind-ring sizes
盲环尺寸 | PSNR/dB | |
---|---|---|
SIDD Validation | SIDD Benchmark | |
1×1 | 24.24 | 26.35 |
3×3 | 27.23 | 28.21 |
5×5 | 30.91 | 31.53 |
7×7 | 33.67 | 34.24 |
9×9 | 37.56 | 38.76 |
11×11 | 34.21 | 36.43 |
13×13 | 32.68 | 34.21 |
步长 | SIDD Validation | SIDD Benchmark | ||
---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | |
2 | 31.55 | 0.897 | 31.21 | 0.885 |
3 | 34.33 | 0.921 | 34.23 | 0.918 |
4 | 37.56 | 0.941 | 37.44 | 0.938 |
5 | 35.12 | 0.928 | 34.13 | 0.922 |
6 | 33.01 | 0.903 | 32.03 | 0.893 |
表4 不同步长的像素混洗下采样策略的消融实验结果
Tab. 4 Ablation experimental results of pixel-shuffle down-sampling strategy with different step sizes
步长 | SIDD Validation | SIDD Benchmark | ||
---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | |
2 | 31.55 | 0.897 | 31.21 | 0.885 |
3 | 34.33 | 0.921 | 34.23 | 0.918 |
4 | 37.56 | 0.941 | 37.44 | 0.938 |
5 | 35.12 | 0.928 | 34.13 | 0.922 |
6 | 33.01 | 0.903 | 32.03 | 0.893 |
RRM | SIDD Validation | SIDD Benchmark | ||
---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | |
35.09 | 0.923 | 34.89 | 0.915 | |
√ | 37.56 | 0.941 | 37.44 | 0.938 |
表5 随机恢复掩码策略的消融实验结果
Tab. 5 Ablation experimental results of random recovery mask strategy
RRM | SIDD Validation | SIDD Benchmark | ||
---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | |
35.09 | 0.923 | 34.89 | 0.915 | |
√ | 37.56 | 0.941 | 37.44 | 0.938 |
损失函数 | SIDD Validation | SIDD Benchmark | ||
---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | |
34.86 | 0.918 | 33.67 | 0.909 | |
36.16 | 0.931 | 35.94 | 0.921 | |
37.56 | 0.941 | 37.44 | 0.938 |
表6 不同损失函数在SID数据集上的PSNR和SSIM
Tab. 6 PSNR and SSIM of different loss functions on SIDD dataset
损失函数 | SIDD Validation | SIDD Benchmark | ||
---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | |
34.86 | 0.918 | 33.67 | 0.909 | |
36.16 | 0.931 | 35.94 | 0.921 | |
37.56 | 0.941 | 37.44 | 0.938 |
[1] | KONG X, YANG Q. No-reference image quality assessment for image auto-denoising[J]. International Journal of Computer Vision, 2018, 126(5): 537-549. |
[2] | DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. |
[3] | GU S, ZHANG L, ZUO W, et al. Weighted nuclear norm minimization with application to image denoising[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 2862-2869. |
[4] | HOSONO K, ONO S, MIYATA T. Weighted tensor nuclear norm minimization for color image denoising [C]// Proceedings of the 2016 IEEE Conference on Image Processing. Piscataway: IEEE, 2016:3081-3085. |
[5] | LUO E, CHAN S H, NGUYEN T Q. Adaptive image denoising by targeted databases[J]. IEEE Transactions on Image Processing, 2015, 24(7): 2167-2181. |
[6] | ANWAR S, BARNES N. Real image denoising with feature attention[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3155-3164. |
[7] | GUO S, YAN Z, ZHANG K, et al. Toward convolutional blind denoising of real photographs[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1712-1722. |
[8] | ABDELHAMED A, LIN S, BROWN M S. A high-quality denoising dataset for smartphone cameras[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1692-1700. |
[9] | PLÖTZ T, ROTH S. Benchmarking denoising algorithms with real photographs[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2750-2759. |
[10] | WEI K, FU Y, YANG J, et al. A physics-based noise formation model for extreme low-light raw denoising[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2755-2764. |
[11] | ZHANG Y, QIN H, WANG X, et al. Rethinking noise synthesis and modeling in raw denoising[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4593-4601. |
[12] | KIM Y, SOH J W, PARK G Y, et al. Transfer learning from synthetic to real-noise denoising with adaptive instance normalization[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3479-3489. |
[13] | LEHTINEN J, MUNKBERG J, HASSELGREN J, et al. Noise2Noise: learning image restoration without clean data[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 2965-2974. |
[14] | MORAN N, SCHMIDT D, ZHONG Y, et al. Noisier2Noise: learning to denoise from unpaired noisy data[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12061-12069. |
[15] | KRULL A, BUCHHOLZ T O, JUG F. Noise2Void — learning denoising from single noisy images[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2124-2132. |
[16] | NESHATAVAR R, YAVARTANOO M, SON S, et al. CVF-SID: cyclic multi-variate function for self-supervised image denoising by disentangling noise from image[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17562-17570. |
[17] | LEE W, SON S, LEE K M. AP-BSN: self-supervised denoising for real-world images via asymmetric PD and blind-spot network[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17704-17713. |
[18] | ZHOU Y, JIAO J, HUANG H, et al. When AWGN-based denoiser meets real noises[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 13074-13081. |
[19] | BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition — Volume 2. Piscataway: IEEE, 2005: 60-65. |
[20] | ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. |
[21] | MAO X J, SHEN C, YANG Y B. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 2810-2818. |
[22] | TAI Y, YANG J, LIU X, et al. MemNet: a persistent memory network for image restoration[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4549-4557. |
[23] | JANG G, LEE W, SON S, et al. C2N: practical generative noise modeling for real-world denoising[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 2330-2339. |
[24] | WU X, LIU M, CAO Y, et al. Unpaired learning of deep image denoising[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12349. Cham: Springer, 2020: 352-368. |
[25] | KOUSHA S, MALEKY A, BROWN M S, et al. Modeling sRGB camera noise with normalizing flows[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17442-17450. |
[26] | SOLTANAYEV S, CHUN S Y. Training deep learning based denoisers without ground truth data[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 3261-3271. |
[27] | BATSON J, ROYER L. Noise2Self: blind denoising by self-supervision[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 524-533. |
[28] | LAINE S, KARRAS T, LEHTINEN J, et al. High-quality self-supervised deep image denoising[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 6970-6980. |
[29] | PANG T, ZHENG H, QUAN Y, et al. Recorrupted-to-recorrupted: unsupervised deep learning for image denoising[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2043-2052. |
[30] | XU J, HUANG Y, CHENG M M, et al. Noisy-as-Clean: learning self-supervised denoising from corrupted image[J]. IEEE Transactions on Image Processing, 2020, 29: 9316-9329. |
[31] | KIM K, KWON T, YE J C. Noise distribution adaptive self-supervised image denoising using Tweedie distribution and score matching[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 1998-2006. |
[32] | ZHANG Z, XU R, LIU M, et al. Self-supervised image restoration with blurry and noisy pairs[C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 29179-29191. |
[33] | BROADDUS C, KRULL A, WEIGERT M, et al. Removing structured noise with self-supervised blind-spot networks[C]// Proceedings of the IEEE 17th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2020: 159-163. |
[34] | LI J, ZHANG Z, LIU X, et al. Spatially adaptive self-supervised learning for real-world image denoising[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 9914-9924. |
[35] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
[36] | YUE Z, YONG H, ZHAO Q, et al. Variational denoising network: toward blind noise modeling and removal[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 1690-1701. |
[37] | ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient Transformer for high-resolution image restoration[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5718-5729. |
[38] | CHEN J, CHEN J, CHAO H, et al. Image blind denoising with generative adversarial network based noise modeling[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3155-3164. |
[39] | HONG Z, FAN X, JIANG T, et al. End-to-end unpaired image denoising with conditional adversarial networks[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 4140-4149. |
[40] | WANG Z, CUN X, BAO J, et al. Uformer: a general U-shaped Transformer for image restoration[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17662-17672. |
[41] | HAN Y J, YU H J. SS-BSN: attentive blind-spot network for self-supervised denoising with nonlocal self-similarity[C]// Proceedings of the 32nd International Joint Conference on Artificial Intelligence. California: ijcai.org, 2023: 800-809. |
[42] | TANG H, ZHANG W, ZHU H, et al. Self-supervised real-world image denoising based on multi-scale feature enhancement and attention fusion[J]. IEEE Access, 2024, 12: 49720-49734. |
[43] | 梁震远,朱松豪. 融合多类替换细化和多分支盲点网络的自监督图像去噪[J]. 小型微型计算机系统, 2025, 46(9): 2153-2159. |
LIANG Z Y, ZHU S H. Self-supervised denoising method via multi-branch blind-spot network with multiclass replacing refinement[J]. Journal of Chinese Computer Systems, 2025, 46(9): 2153-2159. |
[1] | 刘超, 余岩化. 融合降噪策略与多视图对比学习的知识感知推荐模型[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2827-2837. |
[2] | 谢劲, 褚苏荣, 强彦, 赵涓涓, 张华, 高勇. 用于胸片中硬负样本识别的双支分布一致性对比学习模型[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2369-2377. |
[3] | 吴宗航, 张东, 李冠宇. 基于联合自监督学习的多模态融合推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1858-1868. |
[4] | 朱俊屹, 常雷雷, 徐晓滨, 郝智勇, 于海跃, 姜江. 基于最小先验知识的自监督学习方法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1035-1041. |
[5] | 杨光局, 罗天健, 王开军, 杨思琪. 多分支多视图的时间序列上下文对比表征学习方法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1042-1052. |
[6] | 杨建锋, 陈斌, 李雨轩. 基于点云重构的自监督点云异常检测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(10): 3302-3310. |
[7] | 唐廷杰, 黄佳进, 秦进. 基于图辅助学习的会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2711-2718. |
[8] | 丁宇伟, 石洪波, 李杰, 梁敏. 基于局部和全局特征解耦的图像去噪网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2571-2579. |
[9] | 韩贵金, 张馨渊, 张文涛, 黄娅. 基于多特征融合的自监督图像配准算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1597-1604. |
[10] | 汪炅, 唐韬韬, 贾彩燕. 无负采样的正样本增强图对比学习推荐方法PAGCL[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1485-1492. |
[11] | 黄荣, 宋俊杰, 周树波, 刘浩. 基于自监督视觉Transformer的图像美学质量评价方法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1269-1276. |
[12] | 侯瑞峰, 张鹏程, 张丽媛, 桂志国, 刘祎, 张浩文, 王书斌. 基于全变分正则项展开的迭代去噪网络[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 916-921. |
[13] | 王朋博, 单武扬, 李军, 田茂, 邹登, 范占锋. 抗高强度椒盐噪声的鲁棒拼接取证算法[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3177-3184. |
[14] | 张雨宁, 阿布都克力木·阿布力孜, 梅悌胜, 徐春, 麦尔达娜·买买提热依木, 哈里旦木·阿布都克里木, 侯钰涛. 基于自监督特征提取的骨骼X线影像异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 175-181. |
[15] | 马胜位, 黄瑞章, 任丽娜, 林川. 基于多层语义融合的结构化深度文本聚类模型[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2364-2369. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||