《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (7): 2369-2377.DOI: 10.11772/j.issn.1001-9081.2024070968
        
                    
            谢劲1, 褚苏荣1, 强彦1,2( ), 赵涓涓1,3, 张华4, 高勇5
), 赵涓涓1,3, 张华4, 高勇5
                  
        
        
        
        
    
收稿日期:2024-07-09
									
				
											修回日期:2024-09-25
									
				
											接受日期:2024-09-29
									
				
											发布日期:2025-07-10
									
				
											出版日期:2025-07-10
									
				
			通讯作者:
					强彦
							作者简介:谢劲(1999—),男,江苏如皋人,硕士研究生,主要研究方向:计算机视觉、图像处理基金资助:
        
                                                                                                                                                            Jin XIE1, Surong CHU1, Yan QIANG1,2( ), Juanjuan ZHAO1,3, Hua ZHANG4, Yong GAO5
), Juanjuan ZHAO1,3, Hua ZHANG4, Yong GAO5
			  
			
			
			
                
        
    
Received:2024-07-09
									
				
											Revised:2024-09-25
									
				
											Accepted:2024-09-29
									
				
											Online:2025-07-10
									
				
											Published:2025-07-10
									
			Contact:
					Yan QIANG   
							About author:XIE Jin, born in 1999, M. S. candidate. His research interests include computer vision, image processing.Supported by:摘要:
针对对比学习(CL)方法在医学图像中难以区分相似胸片样本以及难以识别微小病灶的问题,提出一种双支分布一致性对比学习模型(TCL)。首先,利用inpainting和outpainting数据增强策略强化模型对肺部纹理的关注,提高模型对复杂结构的识别能力;其次,利用协同学习方法进一步增强模型对肺部微小病灶的敏感性,捕捉不同视角下的病灶信息;最后,利用Student-t分布的重尾特性,对硬负样本进行区分,以约束不同增强视图与样本之间的一致性分布,从而加强硬负样本与其他样本之间的特征关系的学习,并减小硬负样本对模型的影响。在pneumoconiosis、NIH (National Institutes of Health)、Chest X-Ray Images (Pneumonia)和COVID-19 (Corona Virus Disease 2019)这4个胸片数据集上的实验结果表明,相较于MoCo v2 (Momentum Contrastive learning)模型,TCL模型的准确性分别提高了6.14%、3.08%、0.65%和4.67%,而迁移性能在COVID-19数据集上在标签率为5%、20%和50%时分别提高了4.10%、0.61%和8.41%。此外,通过CAM(Class Activation Mapping)可视化验证了TCL模型能关注重要病理区域,验证了所提模型的有效性。
中图分类号:
谢劲, 褚苏荣, 强彦, 赵涓涓, 张华, 高勇. 用于胸片中硬负样本识别的双支分布一致性对比学习模型[J]. 计算机应用, 2025, 45(7): 2369-2377.
Jin XIE, Surong CHU, Yan QIANG, Juanjuan ZHAO, Hua ZHANG, Yong GAO. Dual-branch distribution consistency contrastive learning model for hard negative sample identification in chest X-rays[J]. Journal of Computer Applications, 2025, 45(7): 2369-2377.
| 方法 | 不同数据集上的准确率 | |||
|---|---|---|---|---|
| pneumoconiosis | NIH | Pneumonia | COVID-19 | |
| Supervised[ | 77.68 | 84.98 | 98.75 | 97.62 | 
| MoCo v2[ | 67.18 | 66.42 | 89.67 | 85.49 | 
| SimCLR[ | 64.82 | 65.48 | 84.27 | 82.61 | 
| ReSSL[ | 68.37 | 66.59 | 88.62 | 86.43 | 
| BYOL[ | 66.93 | 66.35 | 83.59 | 85.22 | 
| CPC v2[ | 67.86 | 63.51 | 87.42 | 86.32 | 
| TCL | 71.31 | 68.47 | 90.26 | 89.49 | 
表1 不同方法的分类准确率对比 ( %)
Tab. 1 Comparison of classification accuracy of different methods
| 方法 | 不同数据集上的准确率 | |||
|---|---|---|---|---|
| pneumoconiosis | NIH | Pneumonia | COVID-19 | |
| Supervised[ | 77.68 | 84.98 | 98.75 | 97.62 | 
| MoCo v2[ | 67.18 | 66.42 | 89.67 | 85.49 | 
| SimCLR[ | 64.82 | 65.48 | 84.27 | 82.61 | 
| ReSSL[ | 68.37 | 66.59 | 88.62 | 86.43 | 
| BYOL[ | 66.93 | 66.35 | 83.59 | 85.22 | 
| CPC v2[ | 67.86 | 63.51 | 87.42 | 86.32 | 
| TCL | 71.31 | 68.47 | 90.26 | 89.49 | 
| 源域 | 标签比率 | 目标域 | 方法 | 准确率 | 
|---|---|---|---|---|
| NIH | 5 | COVID-19 | MoCo v2 | 66.47 | 
| TCL | 69.20 | |||
| Pneumonia | MoCo v2 | 63.29 | ||
| TCL | 67.71 | |||
| NIH | 20 | COVID-19 | MoCo v2 | 75.91 | 
| TCL | 76.38 | |||
| Pneumonia | MoCo v2 | 69.83 | ||
| TCL | 72.47 | |||
| NIH | 50 | COVID-19 | MoCo v2 | 79.28 | 
| TCL | 85.95 | |||
| Pneumonia | MoCo v2 | 81.42 | ||
| TCL | 83.65 | 
表2 迁移学习结果 (%)
Tab. 2 Transfer learning results
| 源域 | 标签比率 | 目标域 | 方法 | 准确率 | 
|---|---|---|---|---|
| NIH | 5 | COVID-19 | MoCo v2 | 66.47 | 
| TCL | 69.20 | |||
| Pneumonia | MoCo v2 | 63.29 | ||
| TCL | 67.71 | |||
| NIH | 20 | COVID-19 | MoCo v2 | 75.91 | 
| TCL | 76.38 | |||
| Pneumonia | MoCo v2 | 69.83 | ||
| TCL | 72.47 | |||
| NIH | 50 | COVID-19 | MoCo v2 | 79.28 | 
| TCL | 85.95 | |||
| Pneumonia | MoCo v2 | 81.42 | ||
| TCL | 83.65 | 
| 实验 | 强数据增强 | 弱数据增强 | 准确率/% | ||||
|---|---|---|---|---|---|---|---|
| Inpainting | 随机裁剪 | Outpainting | 高斯模糊 | 水平翻转 | 随机旋转 | ||
| 实验1 | √ | √ | √ | 69.75 | |||
| 实验2 | √ | √ | √ | √ | 65.62 | ||
| 实验3 | √ | √ | √ | 67.27 | |||
| 实验4 | √ | √ | √ | √ | 71.31 | ||
| 实验5 | √ | √ | √ | √ | 67.46 | ||
| 实验6 | √ | √ | √ | 67.92 | |||
表3 不同数据增强方法组合的结果
Tab. 3 Results of different data augmentation method combinations
| 实验 | 强数据增强 | 弱数据增强 | 准确率/% | ||||
|---|---|---|---|---|---|---|---|
| Inpainting | 随机裁剪 | Outpainting | 高斯模糊 | 水平翻转 | 随机旋转 | ||
| 实验1 | √ | √ | √ | 69.75 | |||
| 实验2 | √ | √ | √ | √ | 65.62 | ||
| 实验3 | √ | √ | √ | 67.27 | |||
| 实验4 | √ | √ | √ | √ | 71.31 | ||
| 实验5 | √ | √ | √ | √ | 67.46 | ||
| 实验6 | √ | √ | √ | 67.92 | |||
| 方法 | 不同数据集上的准确率 | |||
|---|---|---|---|---|
| pneumoconiosis | NIH | Pneumonia | COVID-19 | |
| P.S | 61.59 | 60.75 | 81.38 | 83.29 | 
| T | 60.85 | 57.64 | 76.29 | 72.37 | 
| CL P.S+T | 61.61 64.89 | 60.53 61.72 | 82.69 83.65 | 81.62 84.73 | 
| T+CL | 62.57 | 63.24 | 84.58 | 83.26 | 
| P.S+CL | 62.14 | 61.82 | 84.92 | 84.41 | 
| Full(w/o MIL) | 64.94 | 63.73 | 85.37 | 87.29 | 
| Full(w/o AML) | 66.32 | 66.92 | 86.49 | 86.52 | 
| Full model | 71.31 | 68.47 | 90.26 | 89.49 | 
表4 消融实验结果 ( %)
Tab. 4 Ablation experimental results
| 方法 | 不同数据集上的准确率 | |||
|---|---|---|---|---|
| pneumoconiosis | NIH | Pneumonia | COVID-19 | |
| P.S | 61.59 | 60.75 | 81.38 | 83.29 | 
| T | 60.85 | 57.64 | 76.29 | 72.37 | 
| CL P.S+T | 61.61 64.89 | 60.53 61.72 | 82.69 83.65 | 81.62 84.73 | 
| T+CL | 62.57 | 63.24 | 84.58 | 83.26 | 
| P.S+CL | 62.14 | 61.82 | 84.92 | 84.41 | 
| Full(w/o MIL) | 64.94 | 63.73 | 85.37 | 87.29 | 
| Full(w/o AML) | 66.32 | 66.92 | 86.49 | 86.52 | 
| Full model | 71.31 | 68.47 | 90.26 | 89.49 | 
| 方法 | 准确率 | 
|---|---|
| TCL(w/o P.S) | 77.16 | 
| TCL(w/o T) | 71.35 | 
| TCL(w/o CL) | 74.61 | 
| TCL | 81.27 | 
表5 不同模块对迁移性的影响 ( %)
Tab. 5 Influence of different modules on transferability
| 方法 | 准确率 | 
|---|---|
| TCL(w/o P.S) | 77.16 | 
| TCL(w/o T) | 71.35 | 
| TCL(w/o CL) | 74.61 | 
| TCL | 81.27 | 
| 准确率/% | 准确率/% | 准确率/% | |||
|---|---|---|---|---|---|
| 0.0 | 67.76 | 0.4 | 69.86 | 0.8 | 69.73 | 
| 0.1 | 68.36 | 0.5 | 70.35 | 0.9 | 69.79 | 
| 0.2 | 68.72 | 0.6 | 71.31 | 1.0 | 68.61 | 
| 0.3 | 69.41 | 0.7 | 70.49 | 
表6 超参数α对模型的影响
Tab. 6 Hyperparameter α influence on model performance
| 准确率/% | 准确率/% | 准确率/% | |||
|---|---|---|---|---|---|
| 0.0 | 67.76 | 0.4 | 69.86 | 0.8 | 69.73 | 
| 0.1 | 68.36 | 0.5 | 70.35 | 0.9 | 69.79 | 
| 0.2 | 68.72 | 0.6 | 71.31 | 1.0 | 68.61 | 
| 0.3 | 69.41 | 0.7 | 70.49 | 
| [1] | ORAÑO J F V, ORAÑO-MAAGHOP J F V, MARAVILLAS E A. CXR-based lung disease classification using convolutional neural network [C]// Proceedings of the IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management. Piscataway: IEEE, 2022: 1-5. | 
| [2] | RATNATUNGA C N, LUTZKY V P, KUPZ A, et al. The rise of non-tuberculosis mycobacterial lung disease [J]. Frontiers in Immunology, 2020, 11: No.303. | 
| [3] | QUEVEDO S, DOMÍNGEZ F, PELAEZ E. Detecting multi thoracic diseases in chest x-ray images using deep learning techniques [C]// Proceedings of the IEEE 13th International Conference on Pattern Recognition Systems. Piscataway: IEEE, 2023: 1-7. | 
| [4] | ASAITHAMBI A, THAMILARASI V. Classification of lung chest X-ray images using deep learning with efficient optimizers [C]// Proceedings of the IEEE 13th Annual Computing and Communication Workshop and Conference. Piscataway: IEEE, 2023: 465-469. | 
| [5] | YANG F, LU P X, DENG M, et al. Annotations of lung abnormalities in the Shenzhen chest X-ray dataset for computer-aided screening of pulmonary diseases [J]. Data, 2022, 7(7): No.95. | 
| [6] | LIU C, WEN J, LUO X, et al. DICNet: deep instance-level contrastive network for double incomplete multi-view multi-label classification [C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 8807-8815. | 
| [7] | HUANG Z, ZHANG J, SHAN H. Twin contrastive learning with noisy labels [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 11661-11670. | 
| [8] | LIAO H, WANG Q, ZHAO S, et al. Domain consensual contrastive learning for few-shot universal domain adaptation [J]. Applied Intelligence, 2023, 53(22): 27191-27206. | 
| [9] | 韩滕跃,牛少彰,张文.基于对比学习的多模态序列推荐算法[J].计算机应用,2022, 42(6): 1683-1688. | 
| HAN T Y, NIU S Z, ZHANG W. Multimodal sequential recommendation algorithm based on contrastive learning [J]. Journal of Computer Applications, 2022, 42(6): 1683-1688. | |
| [10] | JAISWAL A, BABU A R, ZADEH M Z, et al. A survey on contrastive self-supervised learning [J]. Technologies, 2020, 9(1): No.2. | 
| [11] | LIU X, ZHANG F, HOU Z, et al. Self-supervised learning: generative or contrastive [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 857-876. | 
| [12] | HAN Y, CHEN C, TEWFIK A, et al. Knowledge-augmented contrastive learning for abnormality classification and localization in chest X-rays with radiomics using a feedback loop [C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 1789-1798. | 
| [13] | WEI Z, PARK S, KIM J. A triplet contrast learning of global and local representations for unannotated medical images [C]// Proceedings of the 2022 International Workshop on PRedictive Intelligence in MEdicine, LNCS 13564. Cham: Springer, 2022: 181-190. | 
| [14] | ZENG D, KHEIR J N, ZENG P, et al. Contrastive learning with temporal correlated medical images: a case study using lung segmentation in chest X-rays (invited paper) [C]// Proceedings of the 2021 IEEE/ACM International Conference on Computer Aided Design. Piscataway: IEEE, 2021: 1-7. | 
| [15] | WU H, XIAO F, LIANG C. Dual contrastive learning with anatomical auxiliary supervision for few-shot medical image segmentation [C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13680. Cham: Springer, 2022: 417-434. | 
| [16] | ZHANG Y, JIANG H, MIURA Y, et al. Contrastive learning of medical visual representations from paired images and text [C]// Proceedings of the 7th Machine Learning for Healthcare Conference. New York: JMLR.org, 2022: 2-25. | 
| [17] | HE Y, YANG G, GE R, et al. Geometric visual similarity learning in 3D medical image self-supervised pre-training [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 9538-9547. | 
| [18] | WEI X, NIU X, ZHANG X, et al. Deep pneumonia: attention-based contrastive learning for class-imbalanced pneumonia lesion recognition in chest X-rays [C]// Proceedings of the 2022 IEEE International Conference on Big Data. Piscataway: IEEE, 2022: 5361-5369. | 
| [19] | 刘兆伟,方艳红,郑明宇,等.基于注意力机制与多任务的肺部疾病诊断方法[J].计算机工程,2025, 51(1): 332-342. | 
| LIU Z W, FANG Y H, ZHENG M Y, et al. Lung disease diagnosis method based on attention mechanism and multi-tasking [J]. Computer Engineering, 2025, 51(1): 332-342. | |
| [20] | ROBINSON J, CHUANG C Y, SRA S, et al. Contrastive learning with hard negative samples [EB/OL]. [2024-01-24]. . | 
| [21] | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1597-1607. | 
| [22] | HE K, FAN H, WU Y, et al. Momentum contrast for unsupervised visual representation learning [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9726-9735. | 
| [23] | GRILL J B, STRUB F, ALTCHÉ F, et al. Bootstrap your own latent — a new approach to self-supervised learning [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 21271-21284. | 
| [24] | ZHENG M, YOU S, WANG F, et al. ReSSL: relational self-supervised learning with weak augmentation [C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 2543-2555. | 
| [25] | CUI W, BAI L, YANG X, et al. A new contrastive learning framework for reducing the effect of hard negatives [J]. Knowledge-Based Systems, 2023, 260: No.110121. | 
| [26] | TU W, ZHOU S, LIU X, et al. Hierarchically contrastive hard sample mining for graph self-supervised pretraining [J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(11): 16748-16761. | 
| [27] | KALANTIDIS Y, SARIYILDIZ M B, PION N, et al. Hard negative mixing for contrastive learning [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 21798-21809. | 
| [28] | LI J, ZHAO G, TAO Y, et al. Multi-task contrastive learning for automatic CT and X-ray diagnosis of COVID-19 [J]. Pattern Recognition, 2021, 114: No.107848. | 
| [29] | LI D. Attention-enhanced architecture for improved pneumonia detection in chest X-ray images [J]. BMC Medical Imaging, 2024, 24: No.6. | 
| [30] | PACKHÄUSER K, FOLLE L, THAMM F, et al. Generation of anonymous chest radiographs using latent diffusion models for training thoracic abnormality classification systems [C]// Proceedings of the IEEE 20th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2023: 1-5. | 
| [31] | WANG X, PENG Y, LU L, et al. ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3462-3471. | 
| [32] | KERMANY D S, GOLDBAUM M, CAI W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning [J]. Cell, 2018, 172(5): 1122-1131.e9. | 
| [33] | CHOWDHURY M E H, RAHMAN T, KHANDAKAR A, et al. Can AI help in screening viral and COVID-19 pneumonia? [J]. IEEE Access, 2020, 8: 132665-132676. | 
| [34] | HE K M, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. | 
| [35] | HÉNAFF O J, SRINIVAS A, DE FAUW J, et al. Data-efficient image recognition with contrastive predictive coding [C]// Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 4182-4192. | 
| [1] | 王祉苑, 彭涛, 杨捷. 分布外检测中训练与测试的内外数据整合[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2497-2506. | 
| [2] | 申奥, 黄瑞章, 薛菁菁, 陈艳平, 秦永彬. 基于分布增强的深度变分文本聚类模型[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2457-2463. | 
| [3] | 王震洲, 郭方方, 宿景芳, 苏鹤, 王建超. 面向智能巡检的视觉模型鲁棒性优化方法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2361-2368. | 
| [4] | 姜超英, 李倩, 刘宁, 刘磊, 崔立真. 基于图对比学习的再入院预测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1784-1792. | 
| [5] | 余明峰, 秦永彬, 黄瑞章, 陈艳平, 林川. 基于对比学习增强双注意力机制的多标签文本分类方法[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1732-1740. | 
| [6] | 颜文婧, 王瑞东, 左敏, 张青川. 基于风味嵌入异构图层次学习的食谱推荐模型[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1869-1878. | 
| [7] | 吴宗航, 张东, 李冠宇. 基于联合自监督学习的多模态融合推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1858-1868. | 
| [8] | 龙雨菲, 牟宇辰, 刘晔. 基于张量化图卷积网络和对比学习的多源数据表示学习模型[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1372-1378. | 
| [9] | 胡文彬, 蔡天翔, 韩天乐, 仲兆满, 马常霞. 融合对比学习与情感分析的多模态反讽检测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1432-1438. | 
| [10] | 杨光局, 罗天健, 王开军, 杨思琪. 多分支多视图的时间序列上下文对比表征学习方法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1042-1052. | 
| [11] | 田仁杰, 景明利, 焦龙, 王飞. 基于混合负采样的图对比学习推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1053-1060. | 
| [12] | 党伟超, 温鑫瑜, 高改梅, 刘春霞. 基于多视图多尺度对比学习的图协同过滤[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1061-1068. | 
| [13] | 朱俊屹, 常雷雷, 徐晓滨, 郝智勇, 于海跃, 姜江. 基于最小先验知识的自监督学习方法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1035-1041. | 
| [14] | 王元龙, 刘亭华, 张虎. 基于跨模态对比学习的常识问答模型[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 732-738. | 
| [15] | 陈维, 施昌勇, 马传香. 基于多模态数据融合的农作物病害识别方法[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 840-848. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||