[1] |
全国人民代表大会常务委员会. 中华人民共和国数据安全法[EB/OL]. [2024-02-12]. .
|
|
Standing Committee of the National People’s Congress. Data security law of the People’s Republic of China[EB/OL]. [2024-02-12]. .
|
[2] |
WANG Z, LV Q, LAN X, et al. Cross-lingual knowledge graph alignment via graph convolutional networks[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 349-357.
|
[3] |
WU Y, LIU X, FENG Y, et al. Relation-aware entity alignment for heterogeneous knowledge graphs[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 5278-5284.
|
[4] |
CHURCH K W. Word2Vec[J]. Natural Language Engineering, 2017, 23(1): 155-162.
|
[5] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
[6] |
TANG X, ZHANG J, CHEN B, et al. BERT-INT: a BERT-based interaction model for knowledge graph alignment[C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2020: 3174-3180.
|
[7] |
GORENSTEIN L, KONEN E, GREEN M, et al. Bidirectional encoder representations from Transformers in radiology: a systematic review of natural language processing applications[J]. Journal of the American College of Radiology, 2024, 21(6): 914-941.
|
[8] |
TRISEDYA B D, QI J, ZHANG R. Entity alignment between knowledge graphs using attribute embeddings[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 297-304.
|
[9] |
LIU Z, CAO Y, PAN L, et al. Exploring and evaluating attributes, values, and structures for entity alignment[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 6355-6364.
|
[10] |
PEI S, YU L, YU G, et al. REA: robust cross-lingual entity alignment between knowledge graphs[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 2175-2184.
|
[11] |
MEGAHED M, MOHAMMED A. A comprehensive review of generative adversarial networks: fundamentals, applications, and challenges[J]. WIREs Computational Statistics, 2024, 16(1): No.e1629.
|
[12] |
单力秋. 噪声敏感的关系感知跨语言实体对齐方法研究[D]. 阜新:辽宁工程技术大学, 2022.
|
|
SHAN L Q. Research on noise sensitive relationship aware cross-lingual entity alignment method[D]. Fuxin: Liaoning Technical University, 2022.
|
[13] |
RAOUFI E, HAPPI B G H, LARMANDE P, et al. An analysis of the performance of representation learning methods for entity alignment: benchmark vs. real-world data[J/OL]. Semantic Web Journal (by IOS Press) [2024-02-12]..
|
[14] |
AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nucleus for a web of open data[C]// Proceedings of the 2007 Asian Semantic Web Conference International Semantic Web Conference, LNCS 4825. Berlin: Springer, 2007: 722-735.
|
[15] |
LIANG P, CHEN Y, SUN Y, et al. An information entropy-driven evolutionary algorithm based on reinforcement learning for many-objective optimization[J]. Expert Systems with Applications, 2024, 238(Pt E): No.122164.
|
[16] |
AHMETAJ S, EFTHYMIU V, FAGIN R, et al. Ontology-enriched query answering on relational databases[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 15247-15254.
|
[17] |
TARUS J K, NIU Z, MUSTAFA G. Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning[J]. Artificial Intelligence Review, 2018, 50(1): 21-48.
|
[18] |
BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. New York: ACM, 2013: 2787-2795.
|
[19] |
CHEN M, TIAN Y, YANG M, et al. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 1511-1517.
|
[20] |
WANG Y, TANG W, SUN H, et al. Understanding and guiding weakly supervised entity alignment with potential isomorphism propagation[EB/OL]. [2024-09-23]..
|
[21] |
ZHANG R, SU Y, TRISEDYA B D, et al. AutoAlign: fully automatic and effective knowledge graph alignment enabled by large language models[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(6): 2357-2371.
|
[22] |
JI G, LIU K, HE S, et al. Knowledge graph completion with adaptive sparse transfer matrix[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. New York: ACM, 2016: 985-991.
|
[23] |
HU W, ZHANG Q, SUN Z, et al. MultiKE: a multi-view knowledge graph embedding framework for entity alignment[C]// Proceedings of the 14th International Workshop on Ontology Matching co-located with the 18th International Semantic Web Conference. [S. l.]: CEUR-WS.org, 2019: 189-190.
|
[24] |
GUAN S, JIN X, WANG Y, et al. Self-learning and embedding based entity alignment[C]// Proceedings of the 2017 IEEE International Conference on Big Knowledge. Piscataway: IEEE, 2017: 33-40.
|