《计算机应用》唯一官方网站

• •    下一篇

基于联邦类原型增量学习的加密流量分类方法

陈瑞龙1,伊鹏2,胡涛3,卜佑军4   

  1. 1. 信息工程大学
    2. 中国人民解放军战略支援部队信息工程大学 信息技术研究所
    3. 国家数字交换系统工程技术研究中心
    4. 国家数字程控交换系统研究中心
  • 收稿日期:2024-12-04 修回日期:2025-02-19 接受日期:2025-02-25 发布日期:2025-03-04 出版日期:2025-03-04
  • 通讯作者: 陈瑞龙
  • 基金资助:
    国家自然科学基金

Encrypted Traffic Classification Based on Federated Class Prototype Incremental Learning

  • Received:2024-12-04 Revised:2025-02-19 Accepted:2025-02-25 Online:2025-03-04 Published:2025-03-04

摘要: 近年来,深度学习已经广泛应用于加密流量分类领域,但仍面临诸多挑战,例如用户数据隐私保护、持续学习能力等。本文提出了一种基于联邦类原型增量的加密流量分类方法(FPI-ETC)。在客户端本地模型训练阶段,将本地模型的Softmax分类器替换为原型分类器,以解决Softmax分类器造成的预测偏见问题。在新的任务阶段,客户端利用旧类原型向量生成多个旧类范例,避免本地模型遗忘过去的知识。服务端加权聚合客户端上传的类原型向量,实现类原型的迭代更新。实验结果表明,在客户端任务量等于5且采样率为0.6的条件下,针对ISCX VPN-nonVPN数据集FPI-ETC的最终全局精度相较于现有其他方法提升了9.93~33.45个百分点。针对USTC-TFC2016数据集FPI-ETC的最终全局精度相较于现有其他方法提升了5.06~10.92个百分点,证明FPI-ETC方法在动态更新的加密网络环境中有效缓解了灾难性遗忘问题。

关键词: 加密流量, 网络流量分类, 联邦学习, 增量学习, 深度学习

Abstract: Recently, deep learning methods have been widely used to classify encrypted network traffic. But it still faces challenges, such as data privacy and the model’s sustainable learning capability. We propose an encrypted traffic classification method based on federated class prototype incremental learning (FPI-ETC). During the local model training phase on the client side, the Softmax classifier of the local model is replaced with a prototype classifier to mitigate the prediction bias associated with the Softmax classifier. In the new task phase, the client utilizes existing class prototype vectors to generate multiple exemplars of the old class, thereby preventing the local model from forgetting previously learned knowledge. The experimental results indicated that the final global accuracy of FPI-ETC for the ISCX VPN-nonVPN dataset was enhanced by 9.93 to 33.45 percentage points compared to other existing methods, assuming the number of tasks was set to 5 and the client sampling rate was 0.6. Additionally, the final global accuracies of FPI-ETC for the USTC-TFC2016 dataset showed an improvement of 5.06 to 10.92 percentage points over other existing methods. This demonstrates that the FPI-ETC method effectively addresses the catastrophic forgetting problem in dynamically updated encrypted network environments.

Key words: encrypted traffic, network traffic classification, federated learning, incremental learning, deep learning

中图分类号: